scholarly journals Decision letter: Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration

2017 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Grant Parker Flowers ◽  
Lucas D Sanor ◽  
Craig M Crews

Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.


2013 ◽  
Vol 3 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Daniel L Mace ◽  
Peter Weisdepp ◽  
Louis Gevirtzman ◽  
Thomas Boyle ◽  
Robert H Waterston

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Maaike Welling ◽  
Manuel Alexander Mohr ◽  
Aaron Ponti ◽  
Lluc Rullan Sabater ◽  
Andrea Boni ◽  
...  

Accurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions. Lineage tracing using global fluorescence labeling techniques is complicated by increasing cell density and rapid embryo rotation, which hampers automatic alignment and accurate cell tracking of obtained four-dimensional imaging data sets. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population in order to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP-labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift, reduce overall data size, and accomplish high-fidelity lineage tracing even for increased imaging time intervals – addressing major concerns in the field of volumetric embryo imaging.


2017 ◽  
Author(s):  
Maaike Welling ◽  
Manuel Alexander Mohr ◽  
Aaron Ponti ◽  
Lluc Rullan Sabater ◽  
Andrea Boni ◽  
...  

AbstractAccurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions of mammalian development. Lineage tracing using global labeling techniques is complicated by increasing cell density and rapid embryo rotation, impeding automatic alignment and rendering accurate cell tracking of obtained four-dimensional imaging data sets highly challenging. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift and accomplish high fidelity lineage tracing combined with a reduced data size – addressing majors concerns in the field of volumetric embryo imaging.


2018 ◽  
Author(s):  
Maaike Welling ◽  
Manuel Alexander Mohr ◽  
Aaron Ponti ◽  
Lluc Rullan Sabater ◽  
Andrea Boni ◽  
...  

2018 ◽  
Vol 17 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Daniel Dürr ◽  
Ute-Christine Klehe

Abstract. Faking has been a concern in selection research for many years. Many studies have examined faking in questionnaires while far less is known about faking in selection exercises with higher fidelity. This study applies the theory of planned behavior (TPB; Ajzen, 1991 ) to low- (interviews) and high-fidelity (role play, group discussion) exercises, testing whether the TPB predicts reported faking behavior. Data from a mock selection procedure suggests that candidates do report to fake in low- and high-fidelity exercises. Additionally, the TPB showed good predictive validity for faking in a low-fidelity exercise, yet not for faking in high-fidelity exercises.


Sign in / Sign up

Export Citation Format

Share Document