scholarly journals An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Paschalis Kratsios ◽  
Sze Yen Kerk ◽  
Catarina Catela ◽  
Joseph Liang ◽  
Berta Vidal ◽  
...  

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.

2017 ◽  
Author(s):  
Paschalis Kratsios ◽  
Sze Yen Kerk ◽  
Catarina Catela ◽  
Joseph Liang ◽  
Berta Vidal ◽  
...  

2020 ◽  
Author(s):  
Angela Jimeno-Martín ◽  
Erick Sousa ◽  
Noemi Daroqui ◽  
Rebeca Brocal-Ruiz ◽  
Miren Maicas ◽  
...  

SUMMARYTo search for general principles underlying neuronal regulatory programs we built an RNA interference library against all transcription factors (TFs) encoded in C. elegans genome and systematically screened for specification defects in ten different neuron types of the monoaminergic (MA) superclass.We identified over 90 TFs involved in MA specification, with at least ten different TFs controlling differentiation of each individual neuron type. These TFs belong predominantly to five TF families (HD, bHLH, ZF, bZIP and NHR). Next, focusing on the complexity of terminal differentiation, we identified and functionally characterized the dopaminergic terminal regulatory program. We found that seven TFs from four different families act in a TF collective to provide genetic robustness and to impose a specific gene regulatory signature enriched in the regulatory regions of dopamine effector genes. Our results provide new insights on neuron-type regulatory programs that could help better understand specification and evolution of neuron types.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tulsi Patel ◽  
Oliver Hobert

The acquisition of a specific cellular identity is usually paralleled by a restriction of cellular plasticity. Whether and how these two processes are coordinated is poorly understood. Transcription factors called terminal selectors activate identity-specific effector genes during neuronal differentiation to define the structural and functional properties of a neuron. To study restriction of plasticity, we ectopically expressed C. elegans CHE-1, a terminal selector of ASE sensory neuron identity. In undifferentiated cells, ectopic expression of CHE-1 results in activation of ASE neuron type-specific effector genes. Once cells differentiate, their plasticity is restricted and ectopic expression of CHE-1 no longer results in activation of ASE effector genes. In striking contrast, removal of the respective terminal selectors of other sensory, inter-, or motor neuron types now enables ectopically expressed CHE-1 to activate its ASE-specific effector genes, indicating that terminal selectors not only activate effector gene batteries but also control the restriction of cellular plasticity. Terminal selectors mediate this restriction at least partially by organizing chromatin. The chromatin structure of a CHE-1 target locus is less compact in neurons that lack their resident terminal selector and genetic epistasis studies with H3K9 methyltransferases suggest that this chromatin modification acts downstream of a terminal selector to restrict plasticity. Taken together, terminal selectors activate identity-specific genes and make non-identity-defining genes less accessible, thereby serving as a checkpoint to coordinate identity specification with restriction of cellular plasticity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 211-224 ◽  
Author(s):  
Joseph H Chou ◽  
Cornelia I Bargmann ◽  
Piali Sengupta

Abstract Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.


Author(s):  
Dorothy Benton ◽  
Eva C Jaeger ◽  
Arielle Kilner ◽  
Ashley Kimble ◽  
Josh Lowry ◽  
...  

Abstract Puromycin-sensitive aminopeptidases are found across phyla and are known to regulate the cell-cycle and play a protective role in neurodegenerative disease. PAM-1 is a puromycin-sensitive aminopeptidase important for meiotic exit and polarity establishment in the one-cell Caenorhabditis elegans embryo. Despite conservation of this aminopeptidase, little is known about its targets during development. In order to identify novel interactors, we conducted a suppressor screen and isolated four suppressing mutations in three genes that partially rescued the maternal-effect lethality of pam-1 mutants. Suppressed strains show improved embryonic viability and polarization of the anterior-posterior axis. We identified a missense mutation in wee-1.3 in one of these suppressed strains. WEE-1.3 is an inhibitory kinase that regulates maturation promoting factor. While the missense mutation suppressed polarity phenotypes in pam-1, it does so without restoring centrosome-cortical contact or altering the cortical actomyosin cytoskeleton. To see if PAM-1 and WEE-1.3 interact in other processes, we examined oocyte maturation. While depletion of wee-1.3 causes sterility due to precocious oocyte maturation, this effect was lessened in pam-1 worms, suggesting that PAM-1 and WEE-1.3 interact in this process. Levels of WEE-1.3 were comparable between wild-type and pam-1 strains, suggesting that WEE-1.3 is not a direct target of the aminopeptidase. Thus, we have established an interaction between PAM-1 and WEE-1.3 in multiple developmental processes and have identified suppressors that are likely to further our understanding of the role of puromycin-sensitive aminopeptidases during development.


Sign in / Sign up

Export Citation Format

Share Document