scholarly journals Author response: Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration

Author(s):  
Wenxuan Liu ◽  
Alanna Klose ◽  
Sophie Forman ◽  
Nicole D Paris ◽  
Lan Wei-LaPierre ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 183 ◽  
Author(s):  
David Lee ◽  
Akshay Bareja ◽  
David Bartlett ◽  
James White

Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wenxuan Liu ◽  
Alanna Klose ◽  
Sophie Forman ◽  
Nicole D Paris ◽  
Lan Wei-LaPierre ◽  
...  

Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.


Development ◽  
2012 ◽  
Vol 139 (12) ◽  
pp. e1208-e1208
Author(s):  
B. Gayraud-Morel ◽  
F. Chretien ◽  
A. Jory ◽  
R. Sambasivan ◽  
E. Negroni ◽  
...  

2021 ◽  
Author(s):  
Felicia Lazure ◽  
Rick Farouni ◽  
Korin Sahinyan ◽  
Darren M. Blackburn ◽  
Aldo Hernandez-Corchado ◽  
...  

Adult stem cells are indispensable for tissue regeneration. Tissue-specific stem cells reside in a specialized location called their niche, where they are in constant cross talk with neighboring niche cells and circulatory signals from their environment. Aging has a detrimental effect on the number and the regenerative function of various stem cells. However, whether the loss of stem cell function is a cause or consequence of their aging niche is unclear. Using skeletal muscle stem cells (MuSCs) as a model, we decouple cell-intrinsic from niche-mediated extrinsic effects of aging on their transcriptome. By combining in vivo MuSC heterochronic transplantation models and computational methods, we show that on a genome-wide scale, age-related altered genes fall into two distinct categories regarding their response to the niche environment. Genes that are inelastic in their response to the niche exhibit altered chromatin accessibility and are associated with differentially methylated regions (DMRs) between young and aged cells. On the other hand, genes that are restorable by niche exposure exhibit altered transcriptome but show no change in chromatin accessibility or DMRs. Taken together, our data suggest that the niche environment plays a decisive role in controlling the transcriptional activity of MuSCs, and exposure to a young niche can reverse approximately half of all age-associated changes that are not epigenetically encoded. The muscle niche therefore serves as an important therapeutic venue to mitigate the negative consequence of aging on tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document