scholarly journals The Sec61 translocon limits IRE1α signaling during the unfolded protein response

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Arunkumar Sundaram ◽  
Rachel Plumb ◽  
Suhila Appathurai ◽  
Malaiyalam Mariappan

IRE1α is an endoplasmic reticulum (ER) localized endonuclease activated by misfolded proteins in the ER. Previously, we demonstrated that IRE1α forms a complex with the Sec61 translocon, to which its substrate XBP1u mRNA is recruited for cleavage during ER stress (<xref ref-type="bibr" rid="bib39">Plumb et al., 2015</xref>). Here, we probe IRE1α complexes in cells with blue native PAGE immunoblotting. We find that IRE1α forms a hetero-oligomeric complex with the Sec61 translocon that is activated upon ER stress with little change in the complex. In addition, IRE1α oligomerization, activation, and inactivation during ER stress are regulated by Sec61. Loss of the IRE1α-Sec61 translocon interaction as well as severe ER stress conditions causes IRE1α to form higher-order oligomers that exhibit continuous activation and extended cleavage of XBP1u mRNA. Thus, we propose that the Sec61-IRE1α complex defines the extent of IRE1α activity and may determine cell fate decisions during ER stress conditions.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 156
Author(s):  
Natalia Siwecka ◽  
Wioletta Rozpędek-Kamińska ◽  
Adam Wawrzynkiewicz ◽  
Dariusz Pytel ◽  
J. Alan Diehl ◽  
...  

Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 98-101 ◽  
Author(s):  
Min Lu ◽  
David A. Lawrence ◽  
Scot Marsters ◽  
Diego Acosta-Alvear ◽  
Philipp Kimmig ◽  
...  

Protein folding by the endoplasmic reticulum (ER) is physiologically critical; its disruption causes ER stress and augments disease. ER stress activates the unfolded protein response (UPR) to restore homeostasis. If stress persists, the UPR induces apoptotic cell death, but the mechanisms remain elusive. Here, we report that unmitigated ER stress promoted apoptosis through cell-autonomous, UPR-controlled activation of death receptor 5 (DR5). ER stressors induced DR5 transcription via the UPR mediator CHOP; however, the UPR sensor IRE1α transiently catalyzed DR5 mRNA decay, which allowed time for adaptation. Persistent ER stress built up intracellular DR5 protein, driving ligand-independent DR5 activation and apoptosis engagement via caspase-8. Thus, DR5 integrates opposing UPR signals to couple ER stress and apoptotic cell fate.


Redox Biology ◽  
2019 ◽  
Vol 25 ◽  
pp. 101047 ◽  
Author(s):  
Zhe Zhang ◽  
Lu Zhang ◽  
Li Zhou ◽  
Yunlong Lei ◽  
Yuanyuan Zhang ◽  
...  

2020 ◽  
Vol 295 (46) ◽  
pp. 15692-15711 ◽  
Author(s):  
Julia M. D. Grandjean ◽  
R. Luke Wiseman

The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.


2018 ◽  
Vol 29 (11) ◽  
pp. 1376-1388 ◽  
Author(s):  
Arunkumar Sundaram ◽  
Suhila Appathurai ◽  
Rachel Plumb ◽  
Malaiyalam Mariappan

The endoplasmic reticulum (ER) localized unfolded protein response (UPR) sensors, IRE1α, PERK, and ATF6α, are activated by the accumulation of misfolded proteins in the ER. It is unclear how the endogenous UPR sensors are regulated by both ER stress and the ER luminal chaperone BiP, which is a negative regulator of UPR sensors. Here we simultaneously examined the changes in the endogenous complexes of UPR sensors by blue native PAGE immunoblotting in unstressed and stressed cells. We found that all three UPR sensors exist as preformed complexes even in unstressed cells. While PERK complexes shift to large complexes, ATF6α complexes are reduced to smaller complexes on ER stress. In contrast, IRE1α complexes were not significantly increased in size on ER stress, unless IRE1α is overexpressed. Surprisingly, depletion of BiP had little impact on the endogenous complexes of UPR sensors. In addition, overexpression of BiP did not significantly affect UPR complexes, but suppressed ER stress mediated activation of IRE1α, ATF6α and, to a lesser extent, PERK. Furthermore, we captured the interaction between IRE1α and misfolded secretory proteins in cells, which suggests that the binding of unfolded proteins to preformed complexes of UPR sensors may be crucial for activation.


2020 ◽  
Vol 133 (15) ◽  
pp. jcs218107 ◽  
Author(s):  
Hery Urra ◽  
Philippe Pihán ◽  
Claudio Hetz

ABSTRACTDifferent perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.


2019 ◽  
Vol 218 (9) ◽  
pp. 3002-3018 ◽  
Author(s):  
Fei-Yun Chen ◽  
Min-Yu Huang ◽  
Yu-Min Lin ◽  
Chi-Huan Ho ◽  
Shu-Yu Lin ◽  
...  

The BH3-only pro-apoptotic protein BIK is regulated by the ubiquitin–proteasome system. However, the mechanism of this regulation and its physiological functions remain elusive. Here, we identify Cul5-ASB11 as the E3 ligase targeting BIK for ubiquitination and degradation. ER stress leads to the activation of ASB11 by XBP1s during the adaptive phase of the unfolded protein response, which stimulates BIK ubiquitination, interaction with p97/VCP, and proteolysis. This mechanism of BIK degradation contributes to ER stress adaptation by promoting cell survival. Conversely, genotoxic agents down-regulate this IRE1α–XBP1s–ASB11 axis and stabilize BIK, which contributes in part to the apoptotic response to DNA damage. We show that blockade of this BIK degradation pathway by an IRE1α inhibitor can stabilize a BIK active mutant and increase its anti-tumor activity. Our study reveals that different cellular stresses regulate BIK ubiquitination by ASB11 in opposing directions, which determines whether or not cells survive, and that blocking BIK degradation has the potential to be used as an anti-cancer strategy.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641877051 ◽  
Author(s):  
Alexander R. van Vliet ◽  
Maria Livia Sassano ◽  
Patrizia Agostinis

The endoplasmic reticulum (ER) is the most extensive organelle of the eukaryotic cell and constitutes the major site of protein and lipid synthesis and regulation of intracellular Ca2+ levels. To exert these functions properly, the ER network is shaped in structurally and functionally distinct domains that dynamically remodel in response to intrinsic and extrinsic cues. Moreover, the ER establishes a tight communication with virtually all organelles of the cell through specific subdomains called membrane contact sites. These contact sites allow preferential, nonvesicular channeling of key biological mediators including lipids and Ca2+ between organelles and are harnessed by the ER to interface with and coregulate a variety of organellar functions that are vital to maintain homeostasis. When ER homeostasis is lost, a condition that triggers the activation of an evolutionarily conserved pathway called the unfolded protein response (UPR), the ER undergoes rapid remodeling. These dynamic changes in ER morphology are functionally coupled to the modulation or formation of contact sites with key organelles, such as mitochondria and the plasma membrane, which critically regulate cell fate decisions of the ER-stressed cells. Certain components of the UPR have been shown to facilitate the formation of contact sites through various mechanisms including remodeling of the actin cytoskeleton. In this review, we discuss old and emerging evidence linking the UPR machinery to contact site formation in mammalian cells and discuss their important role in cellular homeostasis.


Science ◽  
2020 ◽  
Vol 371 (6524) ◽  
pp. eabb6896
Author(s):  
Kwontae You ◽  
Lingfei Wang ◽  
Chih-Hung Chou ◽  
Kai Liu ◽  
Toru Nakata ◽  
...  

Tissue homeostasis is perturbed in a diversity of inflammatory pathologies. These changes can elicit endoplasmic reticulum (ER) stress, protein misfolding, and cell death. ER stress triggers the unfolded protein response (UPR), which can promote recovery of ER proteostasis and cell survival or trigger programmed cell death. Here, we leveraged single-cell RNA sequencing to define dynamic transcriptional states associated with the adaptive versus terminal UPR in the mouse intestinal epithelium. We integrated these transcriptional programs with genome-scale CRISPR screening to dissect the UPR pathway functionally. We identified QRICH1 as a key effector of the PERK-eIF2α axis of the UPR. QRICH1 controlled a transcriptional program associated with translation and secretory networks that were specifically up-regulated in inflammatory pathologies. Thus, QRICH1 dictates cell fate in response to pathological ER stress.


Sign in / Sign up

Export Citation Format

Share Document