scholarly journals Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Andrew F Mead ◽  
Nerea Osinalde ◽  
Niels Ørtenblad ◽  
Joachim Nielsen ◽  
Jonathan Brewer ◽  
...  

Superfast muscles (SFMs) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFMs share excitation-contraction coupling pathway adaptations for speed, and if SFMs arose once, or from independent evolutionary events. Here, we demonstrate that to achieve rapid actomyosin crossbridge kinetics bat and songbird SFM express myosin heavy chain genes that are evolutionarily and ontologically distinct. Furthermore, we show that all known SFMs share multiple functional adaptations that minimize excitation-contraction coupling transduction times. Our results suggest that SFM evolved independently in sound-producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control.

2017 ◽  
Author(s):  
AF Mead ◽  
N. Osinalde ◽  
N. Ørtenblad ◽  
J. Nielsen ◽  
J. Brewer ◽  
...  

Superfast muscles (SFM) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. To allow such speed, the archetypal SFM, found in the toadfish swimbladder, has hallmark structural and kinetic adaptations at each step of the conserved excitation-contraction coupling (ECC) pathway. More recently SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFM share ECC adaptations for speed, and if SFM arose once, or from independent evolutionary events. Here we use genomic analysis to identify the myosin heavy chain genes expressed in bat and songbird SFM to achieve rapid actomyosin crossbridge kinetics and demonstrate that these are evolutionarily and ontologically distinct. Furthermore, by quantifying cellular morphometry and calcium signal transduction combined with force measurements we show that all known SFM share multiple functional adaptations that minimize ECC transduction times. Our results suggest that SFM evolved independently in sound producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yankun Lyu ◽  
Vipin K. Verma ◽  
Younjee Lee ◽  
Iosif Taleb ◽  
Rachit Badolia ◽  
...  

AbstractIt is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3826
Author(s):  
Cristina Sanchez ◽  
Vanina Costa ◽  
Rodrigo Garcia-Carmona ◽  
Eloy Urendes ◽  
Javier Tejedor ◽  
...  

This study evaluates and compares the suitability for child–computer interaction (CCI, the branch within human–computer interaction focused on interactive computer systems for children) of two devices: a standard computer mouse and the ENLAZA interface, a head mouse that measures the user’s head posture using an inertial sensor. A multidirectional pointing task was used to assess the motor performance and the users’ ability to learn such a task. The evaluation was based on the interpretation of the metrics derived from Fitts’ law. Ten children aged between 6 and 8 participated in this study. Participants performed a series of pre- and post-training tests for both input devices. After the experiments, data were analyzed and statistically compared. The results show that Fitts’ law can be used to detect changes in the learning process and assess the level of psychomotor development (by comparing the performance of adults and children). In addition, meaningful differences between the fine motor control (hand) and the gross motor control (head) were found by comparing the results of the interaction using the two devices. These findings suggest that Fitts’ law metrics offer a reliable and objective way of measuring the progress of physical training or therapy.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106763
Author(s):  
Eros Quarta ◽  
Riccardo Bravi ◽  
Diego Minciacchi ◽  
Erez James Cohen

Author(s):  
Jessica MacWilliams ◽  
Sneh Patel ◽  
Grace Carlock ◽  
Sarah Vest ◽  
Nancy L. Potter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document