scholarly journals Rat anterior cingulate cortex recalls features of remote reward locations after disfavoured reinforcements

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ali Mashhoori ◽  
Saeedeh Hashemnia ◽  
Bruce L McNaughton ◽  
David R Euston ◽  
Aaron J Gruber

The anterior cingulate cortex (ACC) encodes information supporting mnemonic and cognitive processes. We show here that a rat’s position can be decoded with high spatiotemporal resolution from ACC activity. ACC neurons encoded the current state of the animal and task, except for brief excursions that sometimes occurred at target feeders. During excursions, the decoded position became more similar to a remote target feeder than the rat’s physical position. Excursions recruited activation of neurons encoding choice and reward, and the likelihood of excursions at a feeder was inversely correlated with feeder preference. These data suggest that the excursion phenomenon was related to evaluating real or fictive choice outcomes, particularly after disfavoured reinforcements. We propose that the multiplexing of position with choice-related information forms a mental model isomorphic with the task space, which can be mentally navigated via excursions to recall multimodal information about the utility of remote locations.

2021 ◽  
Vol 0 (0) ◽  
pp. 1-29
Author(s):  
Sara Karimi ◽  
◽  
Mohammad Ismail Zibaii ◽  
Gholam Ali Hamidi ◽  
Abbas Haghparast ◽  
...  

Several studies revealed that orexins may take part in the regulation of the different forms of affective and cognitive processes during wakefulness. The orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) as an important part of the prefrontal cortex (PFC) have a crucial role in cognitive processes such as reward and decision-making and has a high density of orexin receptor type 1 (OX1Rs). In the present study, to find out the role of OX1Rs in the OFC neurons firing rate, the OX1Rs were inhibited in this area after a10-min baseline recording. In the second part, the lateral hypothalamus (LH) as the main source of orexinergic neurons was inhibited and its effect on the firing rate and activity pattern of the ACC or OFC neurons were detected by using single-unit recording technique in the rats. Results showed that blockade of OX1Rs in the OFC could excite 8 and inhibit 1 neuron out of 11. Besides, the blockade of OX1Rs in the ACC could excite 6 and inhibit 3 neurons out of 10. Also, LH inactivation excited 5 out of 12 neurons and inhibited 6 neurons in the ACC. It excited 8 and inhibited 6 neurons out of 14 in the OFC. These data suggested that blockade of the OX1Rs excited 72% of the neurons, but LH inactivation had an exciting effect on just 50% of neurons in two main subregions of PFC. It seems that the PFC neurons receive the orexinergic inputs from the LH and indirectly from other sources.


2003 ◽  
Vol 42 (05) ◽  
pp. 197-209 ◽  
Author(s):  
F. M. Mottaghy ◽  
D. Schmidt ◽  
H.-W. Müller ◽  
B. J. Krause ◽  
H. Hautzel

Summary: Aim: In cognitive neuroscience regional cerebral blood flow (rCBF) imaging with positron-emission-tomography (PET) is a powerful tool to characterize different aspects of cognitive processes by using different data analysis approaches. By use of an n-back verbal working memory task (varied from 0- to 3-back) we present cognitive subtraction analysis as basic strategy as well as parametric and covariance analyses and discuss the results. Methods: Correlation analyses were performed using the individual performance rate as an external covariate, computing inter-regional correlations, and as network analysis applying structural equation modelling to evaluate the effective connectivity between the involved brain regions. Results: Subtraction analyses revealed a fronto-parietal neuronal network also including the anterior cingulate cortex and the cerebellum. With higher memory load the parametric analysis evidenced linear rCBF increases in prefrontal, pre-motor and inferior parietal areas including the precuneus as well as in the anterior cingulate cortex. The rCBF correlation with the individual performance as external covariate depicted negative correlations in bilateral prefrontal and inferior parietal regions, in the precuneus and the anterior cingulate cortex. The network analysis demonstrated mainly occipito-frontally directed interactions which were predominantly left-hemispheric. Additionally, strong linkages were found between extrastriate and parietal regions as well as within the parietal cortex. Conclusion: The data analysis approaches presented here contribute to an extended and more elaborated understanding of cognitive processes and their different sub-aspects.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
M Mannerkoski ◽  
H Heiskala ◽  
K Van Leemput ◽  
L Åberg ◽  
R Raininko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document