scholarly journals The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ronen Reshef ◽  
Elena Kudryavitskaya ◽  
Haran Shani-Narkiss ◽  
Batya Isaacson ◽  
Neta Rimmerman ◽  
...  

Microglia play important roles in perinatal neuro- and synapto-genesis. To test the role of microglia in these processes during adulthood, we examined the effects of microglia depletion, via treatment of mice with the CSF-1 receptor antagonist PLX5622, and abrogated neuronal-microglial communication in CX3C receptor-1 deficient (Cx3cr1−/−) mice. Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. Two-photon time-lapse imaging indicated that microglia depletion reduced spine formation and elimination. Functionally, odor-evoked responses of mitral cells, which are normally inhibited by abGCs, were increased in microglia-depleted mice. In Cx3cr1−/− mice, abGCs exhibited reduced spine density, dynamics and size, concomitantly with reduced contacts between Cx3cr1-deficient microglia and abGCs' dendritic shafts, along with increased proportion of microglia-contacted spines. Thus, during adult neurogenesis, microglia regulate the elimination (pruning), formation, and maintenance of synapses on newborn neurons, contributing to the functional integrity of the olfactory bulb circuitry.

Author(s):  
Max Müller ◽  
Veronica Egger

AbstractThe inhibitory axonless olfactory bulb granule cells (GCs) form reciprocal dendrodendritic synapses with mitral and tufted cells via large spines, mediating recurrent and lateral inhibition. Rat GC dendrites are excitable by local Na+ spine spikes and global Ca2+- and Na+-spikes. To investigate the transition from local to global signaling without Na+ channel inactivation we performed simultaneous holographic two-photon uncaging in acute brain slices, along with whole-cell recording and dendritic Ca2+ imaging. Less than 10 coactive reciprocal spines were sufficient to generate diverse regional and global signals that also included local dendritic Ca2+- and Na+-spikes (D-spikes). Individual spines could sense the respective signal transitions as increments in Ca2+ entry. Dendritic integration was mostly linear until a few spines below global Na+-spike threshold, where often D-spikes set in. NMDARs strongly contributed to active integration, whereas morphological parameters barely mattered. In summary, thresholds for GC-mediated bulbar lateral inhibition are low.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Wankun L Li ◽  
Monica W Chu ◽  
An Wu ◽  
Yusuke Suzuki ◽  
Itaru Imayoshi ◽  
...  

The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.


2008 ◽  
Vol 190 (22) ◽  
pp. 7579-7583 ◽  
Author(s):  
Antje Marie Hempel ◽  
Sheng-bing Wang ◽  
Michal Letek ◽  
José A. Gil ◽  
Klas Flärdh

ABSTRACT Time-lapse imaging of Streptomyces hyphae revealed foci of the essential protein DivIVA at sites where lateral branches will emerge. Overexpression experiments showed that DivIVA foci can trigger establishment of new zones of cell wall assembly, suggesting a key role of DivIVA in directing peptidoglycan synthesis and cell shape in Streptomyces.


2017 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Jen Liou

AbstractThe endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion. STIM1 also directly interacts with end binding protein 1 (EB1) at microtubule (MT) plus-ends and resembles comet-like structures during time-lapse imaging. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with pharmacological perturbation and a reconstitution approach, we revealed that EB1 binding constitutes a diffusion trap mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. EB1 binding delayed the translocation of STIM1 oligomers to ER-PM junctions and recaptured STIM1 to prevent excess SOCE and ER Ca2+ overload. Thus, the counterbalance of EB1 binding and PM targeting of STIM1 shapes the kinetics and amplitude of local SOCE in regions with growing MTs, and contributes to precise spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.SummarySTIM1 activates store-operated Ca2+ entry (SOCE) by translocating to endoplasmic reticulum-plasma membrane junctions. Chang et al. revealed that STIM1 localization and SOCE are regulated by a diffusion trap mechanism mediated by STIM1 binding to EB1 at growing microtubule ends.


2017 ◽  
Author(s):  
Poonam Mishra ◽  
Rishikesh Narayanan

ABSTRACTThe ability of a neuronal population to effectuate response decorrelation has been identified as an essential prelude to efficient neural encoding. To what extent are diverse forms of local and afferent heterogeneities essential in accomplishing such response decorrelation in the dentate gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological heterogeneities into conductance-based network models of the DG and systematically delineate their relative contributions to response decorrelation. We incorporated intrinsic heterogeneities by stochastically generating several electrophysiologically-validated basket and granule cell models that exhibited significant parametric variability, and introduced synaptic heterogeneities through randomized local synaptic strengths. In including adult neurogenesis, we subjected the valid model populations to randomized structural plasticity and matched neuronal excitability to electrophysiological data. We assessed networks comprising different combinations of these three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal cortex. We found that the three forms of local heterogeneities were independently and synergistically capable of mediating significant response decorrelation when the network was driven by identical afferent inputs. Strikingly, however, when we incorporated afferent heterogeneities into the network to account for the unique divergence in DG afferent connectivity, the impact of all three forms of local heterogeneities were significantly suppressed by the dominant role of afferent heterogeneities in mediating response decorrelation. Our results unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of response decorrelation in the DG, and constitute a significant departure from the literature that assigns a critical role for local network heterogeneities in input discriminability.SIGNIFICANCE STATEMENTThe olfactory bulb and the dentate gyrus (DG) networks assimilate new neurons in adult rodents, with adult neurogenesis postulated to subserve efficacious information transfer by reducing correlations in neuronal responses to afferent inputs. Heterogeneities emerging from the lateral dendro-dendritic synapses, mediated by locally-projecting neurogenic inhibitory granule cells, are known to play critical roles in channel decorrelation in the olfactory bulb. However, the contributions of different heterogeneities in mediating response decorrelation in DG, comprising neurogenic excitatory granule cells projecting beyond DG and endowed with uniquely divergent afferent inputs, have not been delineated. Here, we quantitatively demonstrate the dominance of afferent heterogeneities, over multiple local heterogeneities, in the emergence of response decorrelation in DG, together unveiling cross-region degeneracy in accomplishing response decorrelation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryan J Vaden ◽  
Jose Carlos Gonzalez ◽  
Ming-Chi Tsai ◽  
Anastasia J Niver ◽  
Allison R Fusilier ◽  
...  

Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs. Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling. We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs. Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.


Author(s):  
Aleksandra Polosukhina ◽  
Pierre-Marie Lledo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Neuroscience. Please check back later for the full article. In adult mammals, the olfactory bulb and the hippocampus are the regions in the brain that undergo continuous neurogenesis (production and recruitment of newborn neurons). While the other regions of the brain still retain a certain degree of plasticity after birth, they no longer can integrate new neurons. In rodents, thousands of adult-born neurons integrate into the bulb each day, and this process has been found to contribute not only to sensory function, but also to olfactory memory. This was a surprising finding, since historically the adult-brain has been viewed as a static organ. Understanding the process of regeneration of mature neurons in the brain has great potential for therapeutic applications. Consequently, this process of adult-neurogenesis has received widespread attention from clinicians and scientists. Neuroblasts bound for the olfactory bulb are produced in the subventricular zone of the lateral ventricle. Once they reach the olfactory bulb, they mostly develop into inhibitory interneurons called granule cells. Just after one month, about half of the adult-born neurons are eliminated, and the other half fully integrate and function in the olfactory bulb. These cells not only process information from the sensory neurons in the bulb, but also receive massive innervation from various regions of the brain, including the olfactory cortex, locus coeruleus, the horizontal limb of diagonal band of Broca, and the dorsal raphe nucleus. The sensory (bottom-up) and cortical (top-down) activity has been found to play a vital role in the adult-born granule cell survival. Though the exact purpose of these newborn neurons has not been identified, some emerging functions include maintenance of olfactory bulb circuitry, modulating sensory information, modulating olfactory learning, and memory.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001444
Author(s):  
Nina L. Kikel-Coury ◽  
Jacob P. Brandt ◽  
Isabel A. Correia ◽  
Michael R. O’Dea ◽  
Dana F. DeSantis ◽  
...  

Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest–derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.


2021 ◽  
Author(s):  
Funmilayo O Fagbadebo ◽  
Philipp D Kaiser ◽  
Katharina Zittlau ◽  
Natascha Bartlick ◽  
Teresa R Wagner ◽  
...  

The mitochondrial outer membrane (MOM)-anchored GTPase Miro1, is a central player in mitochondrial transport and homeostasis. The dysregulation of Miro1 in amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) suggests that Miro1 may be a potential biomarker or drug target in neuronal disorders. However, the molecular functionality of Miro1 under (patho-) physiological conditions is poorly known. For a more comprehensive understanding of the molecular functions of Miro1, we have developed Miro1-specific nanobodies (Nbs) as novel research tools. We identified seven Nbs that bind either the N- or C-terminal GTPase domain of Miro1 and demonstrate their application as research tools for proteomic and imaging approaches. To visualize the dynamics of Miro1 in real time, we selected intracellularly functional Nbs, which we reformatted into chromobodies (Cbs) for time-lapse imaging of Miro1. By genetic fusion to an Fbox domain, these Nbs were further converted into Miro1-specific degrons and applied for targeted degradation of Miro1 in live cells. In summary, this study presents a collection of novel Nbs that serve as a toolkit for advanced biochemical and intracellular studies and modulations of Miro1, thereby contributing to the understanding of the functional role of Miro1 in disease-derived model systems.


Sign in / Sign up

Export Citation Format

Share Document