scholarly journals Trade-off shapes diversity in eco-evolutionary dynamics

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Farnoush Farahpour ◽  
Mohammadkarim Saeedghalati ◽  
Verena S Brauer ◽  
Daniel Hoffmann

We introduce an Interaction- and Trade-off-based Eco-Evolutionary Model (ITEEM), in which species are competing in a well-mixed system, and their evolution in interaction trait space is subject to a life-history trade-off between replication rate and competitive ability. We demonstrate that the shape of the trade-off has a fundamental impact on eco-evolutionary dynamics, as it imposes four phases of diversity, including a sharp phase transition. Despite its minimalism, ITEEM produces a remarkable range of patterns of eco-evolutionary dynamics that are observed in experimental and natural systems. Most notably we find self-organization towards structured communities with high and sustained diversity, in which competing species form interaction cycles similar to rock-paper-scissors games.

2017 ◽  
Author(s):  
Farnoush Farahpour ◽  
Mohammadkarim Saeedghalati ◽  
Verena Brauer ◽  
Daniel Hoffmann

AbstractWe introduce an Interaction and Trade-off based Eco-Evolutionary Model (ITEEM), in which species are competing for resources in a well-mixed system, and their evolution in interaction trait space is subject to a life-history trade-off between replication rate and competitive ability. We demonstrate that the strength of the trade-off has a fundamental impact on eco-evolutionary dynamics, as it imposes four phases of diversity, including a sharp phase transition. Despite its minimalism, ITEEM produces without furtherad hocfeatures a remarkable range of observed patterns of eco-evolutionary dynamics. Most notably we find self-organization towards structured communities with high and sustainable diversity, in which competing species form interaction cycles similar to rock-paper-scissors games.


2021 ◽  
Author(s):  
Naomi Iris van den Berg ◽  
Lajos Kalmar ◽  
Kiran Raosaheb Patil

Stability of microbial cooperation through common goods is susceptible to cheating. Evidence suggests that cheating plays a less prominent role in many natural systems than hitherto predicted by models of eco-evolutionary dynamics and evolutionary game theory. While several cheater negating factors such as spatial segregation have been identified, most consider single-nutrient regimes. Here we propose a cheater-suppressing mechanism based on previous experimental observations regarding the biochemical trade-off between growth speed and delay in switching to alternative nutrients. As changing the nutrient source requires redistribution of enzymatic resources to different metabolic pathways, the advantage in speed is offset by lower agility due to longer time required for resource re-allocation. Using an in silico model system of sucrose utilisation by Saccharomyces cerevisiae, we find that a trade-off between growth rate and diauxic lag duration can supress cheaters under fluctuating nutrient availability and thereby stabilise cooperation. The resulting temporal dynamics constrain cheaters despite their competitive benefit for the growth on the primary nutrient via avoided public goods synthesis costs. We further show that this speed-agility trade-off can function in synergy with spatial segregation to avoid the collapse of the community due to the cheaters. Taken together, the growth-agility trade-off may contribute to cheater suppression in microbial ecosystems experiencing fluctuating environments, such as plant root microbiota and gut microbiota.


2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450016 ◽  
Author(s):  
V. I. YUKALOV ◽  
D. SORNETTE

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.


2018 ◽  
Vol 115 (4) ◽  
pp. 750-755 ◽  
Author(s):  
Jan M. Nordbotten ◽  
Simon A. Levin ◽  
Eörs Szathmáry ◽  
Nils C. Stenseth

In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: (i) ecologically driven change, (ii) evolutionarily driven change, and (iii) environmentally driven change.


2016 ◽  
Author(s):  
A. Bradley Duthie ◽  
Aline M. Lee ◽  
Jane M. Reid

AbstractInbreeding increases parent-offspring relatedness and commonly reduces offspring viability, shaping selection on reproductive interactions involving relatives and associated parental investment (PI). Nevertheless, theories predicting selection for inbreeding versus inbreeding avoidance and selection for optimal PI have only been considered separately, precluding prediction of optimal PI and associated reproductive strategy given inbreeding. We unify inbreeding and PI theory, demonstrating that optimal PI increases when a female's inbreeding decreases the viability of her offspring. Inbreeding females should therefore produce fewer offspring due to the fundamental trade-off between offspring number and PI. Accordingly, selection for inbreeding versus inbreeding avoidance changes when females can adjust PI with the degree that they inbreed. In contrast, optimal PI does not depend on whether a focal female is herself inbred. However, inbreeding causes optimal PI to increase given strict monogamy and associated biparental investment compared to female-only investment. Our model implies that understanding evolutionary dynamics of inbreeding strategy, inbreeding depression, and PI requires joint consideration of the expression of each in relation to the other. Overall, we demonstrate that existing PI and inbreeding theories represent special cases of a more general theory, implying that intrinsic links between inbreeding and PI affect evolution of behaviour and intra-familial conflict.


2010 ◽  
Vol 278 (1704) ◽  
pp. 449-457 ◽  
Author(s):  
S. Boudsocq ◽  
S. Barot ◽  
N. Loeuille

Although plant strategies for acquiring nutrients have been widely studied from a functional point of view, their evolution is still not well understood. In this study, we investigate the evolutionary dynamics of these strategies and determine how they influence ecosystem properties. To do so, we use a simple nutrient-limited ecosystem model in which plant ability to take up nutrients is subject to adaptive dynamics. We postulate the existence of a trade-off between this ability and mortality. We show that contrasting strategies are possible as evolutionary outcomes, depending on the shape of the trade-off and, when nitrogen is considered as the limiting nutrient, on the intensity of symbiotic fixation. Our model enables us to bridge these evolutionary outcomes to classical ecological theories such as Hardin's tragedy of the commons and Tilman's rule of R *. Evolution does not systematically maximize plant biomass or primary productivity. On the other hand, each evolutionary outcome leads to a decrease in the availability of the limiting mineral nutrient, supporting the work of Tilman on competition between plants for a single resource. Our model shows that evolution can be used to link different classical ecological results and that adaptation may influence ecosystem properties in contrasted ways.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771108 ◽  
Author(s):  
Xiao-Mei Lin ◽  
Chun-Fu Shao ◽  
Jian-Pei Qian ◽  
Ying-Da Zhang

The implementation of expressway toll-free policy during holidays in China has caused serious congestion and frequent accidents on expressways. Many studies have explored the policy’s macroscopic outcome and its countermeasures for policy managers, while limited attention has been paid to the influence mechanism of the policy on the individuals’ travel behavior, especially the mode choice behavior. More insight into the dynamic effects of individuals reacting to policy measure is needed. This study aims at analyzing the adaption progress of the individual’s mode choice behavior and estimating the time-varying influence of the traffic policy on the mode split. With assumptions travelers’ adapting behavior conform to the inertia and myopia principles, a Logit dynamic evolutionary model for mode choice is proposed. A unique globally stable equilibrium state for the model is derived with the strict mathematical analysis. As an application, the influence of the expressway toll-free policy on mode split is evaluated. The travel cost structure, the sensitivity of the travel distance and traffic supply, and the evolutionary dynamics of the mode split are analyzed in scenarios with and without the expressway toll-free policy. The result indicates that travel distance and network’s total supply amount remarkably affect the implementation effect of the policy.


2005 ◽  
Vol 15 (07) ◽  
pp. 2179-2190 ◽  
Author(s):  
FABIO DERCOLE

The paper describes the slow evolution of two adaptive traits that regulate the interactions between two mutualistic populations (e.g. a flowering plant and its insect pollinator). For frozen values of the traits, the two populations can either coexist or go extinct. The values of the traits for which populations extinction is guaranteed are therefore of no interest from an evolutionary point of view. In other words, the evolutionary dynamics must be studied only in a viable subset of trait space, which is bounded due to the physiological cost of extreme trait values. Thus, evolutionary dynamics experience so-called border collision bifurcations, when a system invariant in trait space hits the border of the viable subset. The unfolding of standard and border collision bifurcations with respect to two parameters of biological interest is presented. The algebraic and boundary-value problems characterizing the border collision bifurcations are described together with some details concerning their computation.


Sign in / Sign up

Export Citation Format

Share Document