scholarly journals PDF-1 neuropeptide signaling regulates sexually dimorphic gene expression in shared sensory neurons of C. elegans

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zoë A Hilbert ◽  
Dennis H Kim

Sexually dimorphic behaviors are a feature common to species across the animal kingdom, however how such behaviors are generated from mostly sex-shared nervous systems is not well understood. Building on our previous work which described the sexually dimorphic expression of a neuroendocrine ligand, DAF-7, and its role in behavioral decision-making in C. elegans (Hilbert and Kim, 2017), we show here that sex-specific expression of daf-7 is regulated by another neuroendocrine ligand, Pigment Dispersing Factor (PDF-1), which has previously been implicated in regulating male-specific behavior (Barrios et al., 2012). Our analysis revealed that PDF-1 signaling acts sex- and cell-specifically in the ASJ neurons to regulate the expression of daf-7, and we show that differences in PDFR-1 receptor activity account for the sex-specific effects of this pathway. Our data suggest that modulation of the sex-shared nervous system by a cascade of neuroendocrine signals can shape sexually dimorphic behaviors.

2018 ◽  
Author(s):  
Zoë A. Hilbert ◽  
Dennis H. Kim

ABSTRACTSexually dimorphic behaviors are observed in species across the animal kingdom, however the relative contributions of sex-specific and sex-shared nervous systems to such behaviors are not fully understood. Building on our previous work which described the sexually dimorphic expression of a neuroendocrine ligand, DAF-7, and its role in behavioral decision-making inC. elegans(Hilbert and Kim, 2017), we show here that sex-specific expression ofdaf-7is regulated by another neuroendocrine ligand, Pigment Dispersing Factor (PDF-1), which has previously been implicated in regulating male-specific behavior (Barrios et al., 2012). Our analysis revealed that PDF-1 acts sex- and cell-specifically in the ASJ neurons to regulate the expression ofdaf-7and we show that differences in the expression of the PDFR-1 receptor account for the sex-specific effects of this pathway. Our data suggest that modulation of the sex-shared nervous system by neuroendocrine signaling pathways can play a role in shaping sexually dimorphic behaviors.


2021 ◽  
Author(s):  
Matthew J Gadenne ◽  
Iris Hardege ◽  
Djordji Suleski ◽  
Paris Jaggers ◽  
Isabel Beets ◽  
...  

Sexual dimorphism occurs where different sexes of the same species display differences in characteristics not limited to reproduction. For the nematode Caenorhabditis elegans, in which the complete neuroanatomy has been solved for both hermaphrodites and males, sexually dimorphic features have been observed both in terms of the number of neurons and in synaptic connectivity. In addition, male behaviours, such as food-leaving to prioritise searching for mates, have been attributed to neuropeptides released from sex-shared or sex-specific neurons. In this study, we show that the lury-1 neuropeptide gene shows a sexually dimorphic expression pattern; being expressed in pharyngeal neurons in both sexes but displaying additional expression in tail neurons only in the male. We also show that lury-1 mutant animals show sex differences in feeding behaviours, with pharyngeal pumping elevated in hermaphrodites but reduced in males. LURY-1 also modulates male mating efficiency, influencing motor events during contact with a hermaphrodite. Our findings indicate sex-specific roles of this peptide in feeding and reproduction in C. elegans, providing further insight into neuromodulatory control of sexually dimorphic behaviours.


Epigenomics ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 1543-1558 ◽  
Author(s):  
Lauren A Eaves ◽  
Preeyaphan Phookphan ◽  
Julia E Rager ◽  
Jacqueline Bangma ◽  
Hudson P Santos ◽  
...  

Aim: The contribution of miRNAs as epigenetic regulators of sexually dimorphic gene expression in the placenta is unknown. Materials & methods: 382 placentas from the extremely low gestational age newborns (ELGAN) cohort were evaluated for expression levels of 37,268 mRNAs and 2,102 miRNAs using genome-wide RNA-sequencing. Differential expression analysis was used to identify differences in the expression based on the sex of the fetus. Results: Sexually dimorphic expression was observed for 128 mRNAs and 59 miRNAs. A set of 25 miRNA master regulators was identified that likely contribute to the sexual dimorphic mRNA expression. Conclusion: These data highlight sex-dependent miRNA and mRNA patterning in the placenta and provide insight into a potential mechanism for observed sex differences in outcomes.


2019 ◽  
Author(s):  
Leigh R. Wexler ◽  
Renee M. Miller ◽  
Douglas S. Portman

SUMMARYDynamic integration of internal and external cues is essential for flexible, adaptive animal behavior. In C. elegans, biological sex and feeding state regulate expression of the food-associated chemoreceptor odr-10, contributing to plasticity in food detection and the decision between feeding and exploration. In adult hermaphrodites, odr-10 expression is high; in well-fed adult males, odr-10 expression is low, promoting exploratory mate-searching behavior. Food-deprivation transiently activates male odr-10 expression, heightening food sensitivity and reducing food-leaving. Here, we identify a neuroendocrine feedback loop that sex-specifically regulates odr-10 in response to food deprivation. In well-fed males, insulin-like (IIS) and TGFβ signaling repress odr-10 expression. Upon food deprivation, odr-10 is directly activated by DAF-16/FoxO, the canonical C. elegans IIS effector. The TGFβ ligand DAF-7 acts upstream of IIS, and, likely because of its sexually dimorphic expression in the nervous system, links feeding to odr-10 only in males. Surprisingly, these responses to food deprivation are not triggered by internal metabolic cues, but rather by the loss of sensory signals from food. In the presence of inedible food, males become metabolically starved but express levels of odr-10 and daf-7 comparable to those of well-fed males. Further, exposing food-deprived males to inedible food is sufficient to restore low odr-10 expression. Food signals are detected by a small number of sensory neurons whose activity non-autonomously regulates daf-7 expression, IIS, and odr-10. Thus, adult C. elegans males employ a neuroendocrine feedback loop that integrates food detection and genetic sex to dynamically modulate chemoreceptor expression and sensory behavior.


1990 ◽  
Vol 4 (8) ◽  
pp. 1235-1239 ◽  
Author(s):  
John A. Robertson ◽  
Lars-Arne Haldosén ◽  
Timothy J. J. Wood ◽  
Maureen K. Steed ◽  
Jan-Åke Gustafsson

2000 ◽  
Vol 89 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Jane M. Eason ◽  
Gail A. Schwartz ◽  
Grace K. Pavlath ◽  
Arthur W. English

Little is known regarding the role of androgenic hormones in the maintenance of myosin heavy chain (MHC) composition of rodent masticatory muscles. Because the masseter is the principal jaw closer in rodents, we felt it was important to characterize the influence of androgenic hormones on the MHC composition of the masseter. To determine the extent of sexual dimorphism in the phenotype of masseter muscle fibers of adult (10-mo-old) C57 mice, we stained tissue sections with antibodies specific to type IIa and IIb MHC isoforms. Females contain twice as many fibers containing the IIa MHC as males, and males contain twice as many fibers containing the IIb MHC as females. There is a modest amount of regionalization of MHC phenotypes in the mouse masseter. The rostral portions of the masseter are composed mostly of type IIa fibers, whereas the midsuperficial and caudal regions contain mostly type IIb fibers. Using immunoblots, we showed that castration results in an increase in the expression of type IIa MHC fibers in males. Ovariectomy has no effect on the fiber type composition in females. We conclude that testosterone plays a role in the maintenance of MHC expression in the adult male mouse masseter.


2007 ◽  
Vol 77 (Suppl_1) ◽  
pp. 119-120 ◽  
Author(s):  
Eva Gay ◽  
Sarah Campbell ◽  
Alan McNeilly ◽  
W. Colin Duncan

Sign in / Sign up

Export Citation Format

Share Document