scholarly journals Decision letter: Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state

2019 ◽  
Author(s):  
Lars Dölken
2019 ◽  
Vol 5 (10) ◽  
pp. eaax4761 ◽  
Author(s):  
Wu Liu ◽  
Mehmet U. Caglar ◽  
Zhangming Mao ◽  
Andrew Woodman ◽  
Jamie J. Arnold ◽  
...  

Because many aspects of viral infection dynamics and inhibition are governed by stochastic processes, single-cell analysis should provide more information than approaches using population averaging. We have developed a microfluidic device composed of ~6000 wells, with each well containing a microstructure to capture single, infected cells replicating an enterovirus expressing a fluorescent reporter protein. We have used this system to characterize enterovirus inhibitors with distinct mechanisms of action. Single-cell analysis reveals that each class of inhibitor interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. Single-cell analysis of antiviral candidates not only reveals efficacy but also facilitates clustering of drugs with the same mechanism of action and provides some indication of the ease with which resistance will develop.


2017 ◽  
Vol 9 (11) ◽  
pp. 857-867 ◽  
Author(s):  
Sultan Doğanay ◽  
Maurice Youzong Lee ◽  
Alina Baum ◽  
Jessie Peh ◽  
Sun-Young Hwang ◽  
...  

Early expression ofRIG-IandMDA5in a subset of infected cells may contribute to the decision making process for turning on theIFNB1expression.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Miri Shnayder ◽  
Aharon Nachshon ◽  
Batsheva Rozman ◽  
Biana Bernshtein ◽  
Michael Lavi ◽  
...  

Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.


2018 ◽  
Author(s):  
Todd Bradley ◽  
Guido Ferrari ◽  
Barton F Haynes ◽  
David M Margolis ◽  
Edward P Browne

SummaryThe latent HIV reservoir is diverse, but most studies of HIV latency have used bulk cell assays. Here we characterized cell line and primary cell models of HIV latency with single cell qPCR (sc-qPCR) for viral RNA (vRNA), and single cell RNAseq (scRNAseq). sc-qPCR revealed distinct populations of cells transcribing vRNA across a wide range of levels. Strikingly, scRNAseq of latently infected primary cells revealed a relationship between vRNA levels and the transcriptomic profiles within the population. Cells with the greatest level of HIV silencing expressed a specific set of host genes including markers of central memory T cells. By contrast, latently infected cells with higher levels of HIV transcription expressed markers of activated and effector T cells. These data reveal that heterogeneous behaviors of HIV proviruses within the latent reservoir are influenced by the host cell transcriptional program. Therapeutic modulation of these programs may reverse or enforce HIV latency.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 18-18
Author(s):  
Junji Koya ◽  
Yuki Saito ◽  
Takuro Kameda ◽  
Yasunori Kogure ◽  
Marni B McClure ◽  
...  

Adult T-cell leukemia/lymphoma (ATL) is an aggressive peripheral T-cell malignancy, caused by human T-cell leukemia virus type-1 (HTLV-1) infection. To elucidate immune microenvironment and heterogeneity of HTLV-1-infected normal and leukemic cells, we performed multi-omics single cell analysis, evaluating whole-transcriptome, 101 surface marker proteins, and T/B-cell receptor repertoires in the same single cells. We analyzed 236,192 peripheral blood mononuclear cells (PBMCs) from 31 ATL patients (35 samples including 4 sequential samples), 11 HTLV-1-infected carriers, and 4 healthy donors. In our analysis, expression of HTLV-1-related genes, such as HBZ, clearly identified a distinct cluster of HTLV-1-infected cells within non-malignant CD4+ T cells. These cells are characterized by a CD45RO+CD62L-CD7-CCR4+CD25+CD73+ memory/effector phenotype. By contrast, malignant ATL cells were segregated into different clusters across patients, suggestive of inter-tumor heterogeneity. Transcriptome analysis of CD4+ T cells revealed up-regulation of interferon (IFN) responses and down-regulation of TNFa signaling in malignant ATL cells compared with HTLV-1-infected normal CD4+ T cells. Likewise, sequential sample analysis showed that progression from indolent to aggressive disease enhanced IFN responses, suggesting a pivotal role of this pathway in the ATL pathogenesis. Surface marker protein analysis demonstrated that HTLV-1 infection up-regulated the expression of stimulatory and inhibitory immune checkpoint molecules (such as OX40 and TIGIT, respectively), which was further augmented by ATL progression. Within malignant cells, we identified a fraction of cycling cells present across most ATL samples. This fraction showed an enhanced T-cell activation markers, such as CD25 and HLA-DR, and their frequency was increased in aggressive subtypes. On the other hand, in HTLV-1-infected carriers, HTLV-1-infected CD4+ T cells contained a small population of malignant-like cells showing clonal expansion. The degree of clonal expansion was significantly correlated with HTLV-1 viral load in PBMCs. These results clarify the heterogeneity within HTLV-1-infected cells and ATL malignant cells, pointing to its relevance during ATL initiation and progression. We also observed dynamic changes of the immune microenvironment in ATL. Although the relative frequencies of other cell types remained almost the same or reduced, only myeloid cells were increased in ATL patients compared with in HTLV-1-infected carriers. Re-clustering of myeloid cells identified a novel cluster of monocytes expressing FCGR1A, encoding CD64, a biomarker of IFN-stimulated gene levels. Transcriptome analysis revealed increased IFN signaling and decreased TNFa in myeloid cells from ATL patients compared with HTLV-1-infected carriers. Similar expression signatures changes were also observed in various immune cell types, such as B, CD8+ T, and NK cells, in ATL patients. In addition, substantial changes of surface marker proteins were also found in ATL patients. Particularly, T-cell activation markers, such as HLA-DR, and inhibitory immune checkpoint molecules, such as PD-1 and TIM-3, were up-regulated in CD8+ T cells from ATL patients. A co-culture experiment of ATL cell lines with PBMCs from healthy volunteers demonstrated that ATL cells induced immune-phenotypic changes of myeloid and CD8+ T cells, similar to those observed in ATL patient by our single-cell analysis, confirming the role of ATL cells in the modulation of the immune system. Taken together, the composition and function of immune microenvironment is dramatically altered in ATL patients, which may contribute to immunosuppression and disease progression in ATL. In summary, our multi-omics single-cell analysis comprehensively dissects the cellular and molecular architecture in HTLV-1-infected carriers and ATL patients. In particular, our approach clearly defines HTLV-1-infected cells by the expression of HTLV-1-related genes, leading to the detailed characterization of HTLV-1-infected cells and elucidation of their difference from ATL malignant cells. These findings will help to devise novel diagnostic and therapeutic strategies for HTLV-1-related disorders. Disclosures Kogure: Takeda Pharmaceutical Company Limited.: Honoraria. Shimoda:Japanese Society of Hematology: Research Funding; The Shinnihon Foundation of Advanced Medical Treatment Research: Research Funding; Bristol-Myers Squibb: Honoraria; Takeda Pharmaceutical Company: Honoraria; Novartis: Honoraria, Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Pfizer Inc.: Research Funding; Otsuka Pharmaceutical: Research Funding; Asahi Kasei Medical: Research Funding; Shire plc: Honoraria; Celgene: Honoraria; Perseus Proteomics: Research Funding; PharmaEssentia Japan: Research Funding; AbbVie Inc.: Research Funding; Astellas Pharma: Research Funding; Merck & Co.: Research Funding. Kataoka:CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; Takeda Pharmaceutical Company: Research Funding; Otsuka Pharmaceutical: Research Funding; Asahi Genomics: Current equity holder in private company.


2020 ◽  
Author(s):  
Jennifer N. Berger ◽  
Bridget Sanford ◽  
Abigail K. Kimball ◽  
Lauren M. Oko ◽  
Rachael E. Kaspar ◽  
...  

SUMMARYVirus infection is frequently characterized using bulk cell populations. How these findings correspond to infection in individual cells remains unclear. Here, we integrate high-dimensional single-cell approaches to quantify viral and host RNA and protein expression signatures using de novo infection with a well-characterized model gammaherpesvirus. While infected cells demonstrated genome-wide transcription, individual cells revealed pronounced variation in gene expression, with only 9 of 80 annotated viral open reading frames uniformly expressed in all cells, and a 1000-fold variation in viral RNA expression between cells. Single-cell analysis further revealed positive and negative gene correlations, many uniquely present in a subset of cells. Beyond variation in viral gene expression, individual cells demonstrated a pronounced, dichotomous signature in host gene expression, revealed by measuring host RNA abundance and post-translational protein modifications. These studies provide a resource for the high-dimensional analysis of virus infection, and a conceptual framework to define virus infection as the sum of virus and host responses at the single-cell level.HIGHLIGHTSCyTOF and scRNA-seq identify wide variation in gene expression between infected cells.Host RNA expression and post-translational modifications stratify virus infection.Single cell RNA analysis reveals new relationships in viral gene expression.Simultaneous measurement of virus and host defines distinct infection states.


Author(s):  
Alexander Lind ◽  
Falastin Salami ◽  
Anne‐Marie Landtblom ◽  
Lars Palm ◽  
Åke Lernmark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document