scholarly journals Mayday sustains trans-synaptic BMP signaling required for synaptic maintenance with age

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jessica M Sidisky ◽  
Daniel Weaver ◽  
Sarrah Hussain ◽  
Meryem Okumus ◽  
Russell Caratenuto ◽  
...  

Maintaining synaptic structure and function over time is vital for overall nervous system function and survival. The processes that underly synaptic development are well understood. However, the mechanisms responsible for sustaining synapses throughout the lifespan of an organism are poorly understood. Here, we demonstrate that a previously uncharacterized gene, CG31475, regulates synaptic maintenance in adult Drosophila NMJs. We named CG31475 mayday due to the progressive loss of flight ability and synapse architecture with age. Mayday is functionally homologous to the human protein Cab45, which sorts secretory cargo from the Trans Golgi Network (TGN). We find that Mayday is required to maintain trans-synaptic BMP signaling at adult NMJs in order to sustain proper synaptic structure and function. Finally, we show that mutations in mayday result in the loss of both presynaptic motor neurons as well as postsynaptic muscles, highlighting the importance of maintaining synaptic integrity for cell viability.

2010 ◽  
Vol 43 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Charu Misra ◽  
Sophie Restituito ◽  
Jainne Ferreira ◽  
Gerald A. Rameau ◽  
Jie Fu ◽  
...  

2018 ◽  
Vol 84 (7) ◽  
pp. 478-487 ◽  
Author(s):  
Kaichuan Zhu ◽  
Finn Peters ◽  
Severin Filser ◽  
Jochen Herms

2010 ◽  
Vol 38 (2) ◽  
pp. 443-444 ◽  
Author(s):  
Nils Brose ◽  
Vincent O'Connor ◽  
Paul Skehel

Synaptopathy is an increasingly popular term used to define key features of neurodegenerative and psychiatric disease. It implies that disruptions in synaptic structure and function are potentially the major determinant of such brain diseases. The Synaptopathies: Dysfunction of Synaptic Function Biochemical Society Focused Meeting brought together several invited speakers, supplemented with short communications from young scientists, who addressed this possibility. The talks spanned the full gamut of approaches that brought molecular, cellular, systems and whole-animal experimentation together to address how fundamental synaptic biology was increasingly informing on dysfunction in disease. The disease and models thereof discussed included Alzheimer's disease, prions, Huntington's disease, Parkinson's disease, schizophrenia and autism. The audience were asked to reflect on whether synaptopathy, although attractive and conceptually useful, provided a significant explanation as the cause of these major diseases. The breadth of the meeting reinforced the complexity of these brain diseases, supported the significance of synaptic dysfunction in disease, but left open the issue as to whether the prime cause of these disorders could be resolved as simple synaptic dysfunction. Thus, despite revealing a value of synaptopathy, further investigation will be required to reveal its balance in the cause and effect in each of the major brain diseases.


Sign in / Sign up

Export Citation Format

Share Document