scholarly journals Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kevin H-C Wei ◽  
Carolus Chan ◽  
Doris Bachtrog

Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During Drosophila embryonic cellularization, heterochromatin rapidly appears over repetitive sequences but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of Drosophila miranda at precisely-staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization, and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage3 over transposable elements (TE) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation develops broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular Drosophila embryos.

2021 ◽  
Author(s):  
Kevin H.-C. Wei ◽  
Carolus Chan ◽  
Doris Bachtrog

Heterochromatin is a key architectural feature of eukaryotic genomes, crucial for silencing of repetitive elements and maintaining genome stability. Heterochromatin shows stereotypical enrichment patterns around centromeres and repetitive sequences, but the molecular details of how heterochromatin is established during embryogenesis are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of D. miranda at precisely staged developmental time points. We find that canonical H3K9me3 enrichment patterns are established early on before cellularization, and mature into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage3 (nuclear cycle 9) over transposable elements (TE) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of TE families and often appear over promoter regions, while late nucleation develops broadly across most TEs. Early nucleating TEs are highly targeted by maternal piRNAs and show early zygotic transcription, consistent with a model of co-transcriptional silencing of TEs by small RNAs. Interestingly, truncated TE insertions lacking nucleation sites show significantly reduced enrichment across development, suggesting that the underlying sequences play an important role in recruiting histone methyltransferases for heterochromatin establishment.


2015 ◽  
Vol 112 (44) ◽  
pp. 13633-13638 ◽  
Author(s):  
André Marques ◽  
Tiago Ribeiro ◽  
Pavel Neumann ◽  
Jiří Macas ◽  
Petr Novák ◽  
...  

Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated “Tyba” and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle–dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 249-268 ◽  
Author(s):  
Utpal Bhadra ◽  
Manika Pal-Bhadra ◽  
James A Birchler

Abstract Immunostaining of chromosomes shows that the male-specific lethal (MSL) proteins are associated with all female chromosomes at a low level but are sequestered to the X chromosome in males. Histone-4 Lys-16 acetylation follows a similar pattern in normal males and females, being higher on the X and lower on the autosomes in males than in females. However, the staining pattern of acetylation and the mof gene product, a putative histone acetylase, in msl mutant males returns to a uniform genome-wide distribution as found in females. Gene expression on the autosomes correlates with the level of histone-4 acetylation. With minor exceptions, the expression levels of X-linked genes are maintained with either an increase or decrease of acetylation, suggesting that the MSL complex renders gene activity unresponsive to H4Lys16 acetylation. Evidence was also found for the presence of nucleation sites for association of the MSL proteins with the X chromosome rather than individual gene binding sequences. We suggest that sequestration of the MSL proteins occurs in males to nullify on the autosomes and maintain on the X, an inverse effect produced by negatively acting dosage-dependent regulatory genes as a consequence of the evolution of the X/Y sex chromosomal system.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Oluchi Aroh ◽  
Kenneth M. Halanych

Abstract Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hong Zhang ◽  
Yirong Wang ◽  
Xinkai Wu ◽  
Xiaolu Tang ◽  
Changcheng Wu ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-22435-2


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 890
Author(s):  
Zifeng Ouyang ◽  
Yimeng Wang ◽  
Tiantian Ma ◽  
Gisele Kanzana ◽  
Fan Wu ◽  
...  

Melilotus is an important genus of legumes with industrial and medicinal value, partly due to the production of coumarin. To explore the genetic diversity and population structure of Melilotus, 40 accessions were analyzed using long terminal repeat (LTR) retrotransposon-based markers. A total of 585,894,349 bp of LTR retrotransposon sequences, accounting for 55.28% of the Melilotus genome, were identified using bioinformatics tools. A total of 181,040 LTR retrotransposons were identified and classified as Gypsy, Copia, or another type. A total of 350 pairs of primers were designed for assessing polymorphisms in 15 Melilotus albus accessions. Overall, 47 polymorphic primer pairs were screened for their availability and transferability in 18 Melilotus species. All the primer pairs were transferable, and 292 alleles were detected at 47 LTR retrotransposon loci. The average polymorphism information content (PIC) value was 0.66, which indicated that these markers were highly informative. Based on unweighted pair group method with arithmetic mean (UPGMA) dendrogram cluster analysis, the 18 Melilotus species were classified into three clusters. This study provides important data for future breeding programs and for implementing genetic improvements in the Melilotus genus.


2007 ◽  
Vol 283 (3) ◽  
pp. 1229-1233 ◽  
Author(s):  
Claudia Ben-Dov ◽  
Britta Hartmann ◽  
Josefin Lundgren ◽  
Juan Valcárcel

Alternative splicing of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. High-throughput enabling technologies, particularly large-scale sequencing and splicing-sensitive microarrays, are providing unprecedented opportunities to address key questions in this field. The picture emerging from these pioneering studies is that alternative splicing affects most human genes and a significant fraction of the genes in other multicellular organisms, with the potential to greatly influence the evolution of complex genomes. A combinatorial code of regulatory signals and factors can deploy physiologically coherent programs of alternative splicing that are distinct from those regulated at other steps of gene expression. Pre-mRNA splicing and its regulation play important roles in human pathologies, and genome-wide analyses in this area are paving the way for improved diagnostic tools and for the identification of novel and more specific pharmaceutical targets.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rahman Ebrahimzadegan ◽  
Andreas Houben ◽  
Ghader Mirzaghaderi

AbstractHere, we characterized the basic properties of repetitive sequences in essential A and supernumerary B chromosomes of Festuca pratensis Huds. This was performed by comparative analysis of low-pass Illumina sequence reads of B chromosome lacking (−B) and B chromosome containing (+B) individuals of F. pratensis. 61% of the nuclear genome is composed of repetitive sequences. 43.1% of the genome are transposons of which DNA transposons and retrotransposons made up 2.3% and 40.8%, respectively. LTR retrotransposons are the most abundant mobile elements and contribute to 40.7% of the genome and divided into Ty3-gypsy and Ty1-copia super families with 32.97% and 7.78% of the genome, respectively. Eighteen different satellite repeats were identified making up 3.9% of the genome. Five satellite repeats were used as cytological markers for chromosome identification and genome analysis in the genus Festuca. Four satellite repeats were identified on B chromosomes among which Fp-Sat48 and Fp-Sat253 were specific to the B chromosome of F. pratensis.


Sign in / Sign up

Export Citation Format

Share Document