illumina sequence
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Rahman Ebrahimzadegan ◽  
Fatemeh Orooji ◽  
Pengtao Ma ◽  
Ghader Mirzaghaderi

Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn’t detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.


2021 ◽  
Author(s):  
Jacob Botkin ◽  
Ashok K Chanda ◽  
Frank N Martin ◽  
Cory D Hirsch

Aphanomyces cochlioides, the causal agent of damping-off and root rot of sugar beet (Beta vulgaris L.), is a soil-dwelling oomycete responsible for yield losses in all major sugar beet growing regions. Currently, genomic resources for A. cochlioides are limited. Here we report a de novo genome assembly using a combination of long-read MinION (Oxford Nanopore Technologies) and short-read Illumina sequence data for A. cochlioides isolate 103-1, from Breckenridge, MN. The assembled genome was 76.3 Mb, with a contig N50 of 2.6 Mb. The reference assembly was annotated and was composed of 32.1% repetitive elements and 20,274 gene models. This high-quality genome assembly of A. cochlioides will be a valuable resource for understanding genetic variation, virulence factors, and comparative genomics of this important sugar beet pathogen.


2021 ◽  
Author(s):  
Rebekka Sontowski ◽  
Yvonne Poeschl ◽  
Yu Okamura ◽  
Heiko Vogel ◽  
Cervin Guyomar ◽  
...  

Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oil seed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground-living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D. radicum to its host plants and their specific chemical defenses, in particular isothiocyanates. Therefore, we assembled, annotated and analyzed the D. radicum genome using a combination of different Next Generation Sequencing and bioinformatic approaches. We assembled a chromosome-level D. radicum genome using PacBio and Hi-C Illumina sequence data. Combining Canu and 3D-DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo-chromosomes. To annotate the assembled D. radicum genome, we combined homology-, transcriptome- and ab initio-prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analyzed egg, larval, pupal and adult transcriptomes in relation to life-stage specific molecular functions. This high-quality annotated genome of D. radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests.


Author(s):  
Helena M. B. Seth-Smith ◽  
Michael Biggel ◽  
Tim Roloff ◽  
Vladimira Hinic ◽  
Thomas Bodmer ◽  
...  

Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jessica R. Brandt ◽  
Sinta H. Saidah ◽  
Kai Zhao ◽  
Yasuko Ishida ◽  
Isabella Apriyana ◽  
...  

Abstract Objective The Sumatran rhinoceros is critically endangered, with fewer than 100 individuals surviving across its current range. Accurate census estimates of the remaining populations are essential for development and implementation of conservation plans. In order to enable molecular censusing, we here develop microsatellite markers with amplicon sizes of short length, appropriate for non-invasive fecal sampling. Results Due to limited sample quantity and potential lack of genome-wide diversity, Illumina sequence reads were generated from two Sumatran rhinoceros samples. Genomic screening identified reads with short tandem repeats and loci that were polymorphic within the dataset. Twenty-nine novel polymorphic microsatellite markers were characterized (A = 2.4; HO = 0.30). These were sufficient to distinguish among individuals (PID < 0.0001), and to distinguish among siblings (PID(sib) < 0.0001). Among rhinos in Indonesia, almost all markers were established as polymorphic and effective for genotyping DNA from fecal samples. Notably, the markers amplified and displayed microsatellite polymorphisms using DNA extracted from 11 fecal samples collected non-invasively from wild Sumatran rhinoceros. These microsatellite markers provide an important resource for a census and genetic studies of wild Sumatran rhinos.


2020 ◽  
Author(s):  
Kevin R Bredemeyer ◽  
Andrew J Harris ◽  
Gang Li ◽  
Le Zhao ◽  
Nicole M Foley ◽  
...  

Abstract In addition to including one of the most popular companion animals, species from the cat family Felidae serve as a powerful system for genetic analysis of inherited and infectious disease, as well as for the study of phenotypic evolution and speciation. Previous diploid-based genome assemblies for the domestic cat have served as the primary reference for genomic studies within the cat family. However, these versions suffered from poor resolution of complex and highly repetitive regions, with substantial amounts of unplaced sequence that is polymorphic or copy number variable. We sequenced the genome of a female F1 Bengal hybrid cat, the offspring of a domestic cat (Felis catus) x Asian leopard cat (Prionailurus bengalensis) cross, with PacBio long sequence reads and used Illumina sequence reads from the parents to phase &gt;99.9% of the reads into the two species’ haplotypes. De novo assembly of the phased reads produced highly continuous haploid genome assemblies for the domestic cat and Asian leopard cat, with contig N50 statistics exceeding 83 Mb for both genomes. Whole genome alignments reveal the Felis and Prionailurus genomes are colinear, and the cytogenetic differences between the homologous F1 and E4 chromosomes represent a case of centromere repositioning in the absence of a chromosomal inversion. Both assemblies offer significant improvements over the previous domestic cat reference genome, with a 100% increase in contiguity and the capture of the vast majority of chromosome arms in one or two large contigs. We further demonstrated that comparably accurate F1 haplotype phasing can be achieved with members of the same species when one or both parents of the trio are not available. These novel genome resources will empower studies of feline precision medicine, adaptation and speciation.


2020 ◽  
Vol 9 (35) ◽  
Author(s):  
Ruimin Gao ◽  
Marc-Olivier Duceppe ◽  
Sohail Naushad ◽  
Marie Anne Chattaway ◽  
Dele Ogunremi

ABSTRACT The complete genome sequences of 12 isolates of the rare Salmonella enterica serovar Adjame were determined by combining Nanopore and Illumina sequence reads. Chromosome sizes ranged from 4,597,011 bp to 4,678,052 bp, and the GC content was 52.3%. A virulent plasmid of 87,433 bp was found in only one isolate.


2020 ◽  
Vol 110 (5) ◽  
pp. 969-972
Author(s):  
Luis F. Arias-Giraldo ◽  
Annalisa Giampetruzzi ◽  
Madis Metsis ◽  
Ester Marco-Noales ◽  
Juan Imperial ◽  
...  

Xylella fastidiosa is an economically important plant pathogenic bacterium of global importance associated, since 2013, with a devastating epidemic in olive trees in Italy. Since then, several outbreaks of this pathogen have been reported in other European member countries including Spain, France, and Portugal. In Spain, the three major subspecies (subsp. fastidiosa, multiplex, and pauca) of the bacterium have been detected in the Balearic Islands, but only subspecies multiplex in the mainland (Alicante). We present the first complete genome sequences of two Spanish strains: X. fastidiosa subsp. fastidiosa IVIA5235 from Mallorca and X. fastidiosa subsp. multiplex IVIA5901 from Alicante, using Oxford Nanopore and Illumina sequence reads, and two hybrid approaches for genome assembly. These completed genomes will provide a resource to better understand the biology of these X. fastidiosa strains.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Piroon Jenjaroenpun ◽  
Thidathip Wongsurawat ◽  
Zulema Udaondo ◽  
Courtney Anderson ◽  
James Lopez ◽  
...  

Here, we present complete genome sequences of four Enterococcus faecium isolates, obtained from two patients with apparent vancomycin-resistant Enterococcus faecium bacteremia; these isolates also carried two mutations known to be associated with daptomycin resistance. Sequences were obtained using de novo and hybrid assembly of Oxford Nanopore and Illumina sequence data.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rahman Ebrahimzadegan ◽  
Andreas Houben ◽  
Ghader Mirzaghaderi

AbstractHere, we characterized the basic properties of repetitive sequences in essential A and supernumerary B chromosomes of Festuca pratensis Huds. This was performed by comparative analysis of low-pass Illumina sequence reads of B chromosome lacking (−B) and B chromosome containing (+B) individuals of F. pratensis. 61% of the nuclear genome is composed of repetitive sequences. 43.1% of the genome are transposons of which DNA transposons and retrotransposons made up 2.3% and 40.8%, respectively. LTR retrotransposons are the most abundant mobile elements and contribute to 40.7% of the genome and divided into Ty3-gypsy and Ty1-copia super families with 32.97% and 7.78% of the genome, respectively. Eighteen different satellite repeats were identified making up 3.9% of the genome. Five satellite repeats were used as cytological markers for chromosome identification and genome analysis in the genus Festuca. Four satellite repeats were identified on B chromosomes among which Fp-Sat48 and Fp-Sat253 were specific to the B chromosome of F. pratensis.


Sign in / Sign up

Export Citation Format

Share Document