scholarly journals New insights into the mechanism of dynein motor regulation by lissencephaly-1

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Steven M Markus ◽  
Matthew G Marzo ◽  
Richard J McKenney

Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.

2011 ◽  
Vol 22 (15) ◽  
pp. 2690-2701 ◽  
Author(s):  
Melissa D. Stuchell-Brereton ◽  
Amanda Siglin ◽  
Jun Li ◽  
Jeffrey K. Moore ◽  
Shubbir Ahmed ◽  
...  

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2409-2419 ◽  
Author(s):  
M. McGrail ◽  
T.S. Hays

During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1211-1220 ◽  
Author(s):  
Kristin L M Boylan ◽  
Thomas S Hays

Abstract The microtubule motor cytoplasmic dynein powers a variety of intracellular transport events that are essential for cellular and developmental processes. A current hypothesis is that the accessory subunits of the dynein complex are important for the specialization of cytoplasmic dynein function. In a genetic approach to understanding the range of dynein functions and the contribution of the different subunits to dynein motor function and regulation, we have identified mutations in the gene for the cytoplasmic dynein intermediate chain, Dic19C. We used a functional Dic transgene in a genetic screen to recover X-linked lethal mutations that require this transgene for viability. Three Dic mutations were identified and characterized. All three Dic alleles result in larval lethality, demonstrating that the intermediate chain serves an essential function in Drosophila. Like a deficiency that removes Dic19C, the Dic mutations dominantly enhance the rough eye phenotype of Glued1, a dominant mutation in the gene for the p150 subunit of the dynactin complex, a dynein activator. Additionally, we used complementation analysis to identify an existing mutation, shortwing (sw), as an allele of the dynein intermediate chain gene. Unlike the Dic alleles isolated de novo, shortwing is homozygous viable and exhibits recessive and temperature-sensitive defects in eye and wing development. These phenotypes are rescued by the wild-type Dic transgene, indicating that shortwing is a viable allele of the dynein intermediate chain gene and revealing a novel role for dynein function during wing development.


1994 ◽  
Vol 126 (6) ◽  
pp. 1475-1494 ◽  
Author(s):  
M Li ◽  
M McGrail ◽  
M Serr ◽  
T S Hays

The unidirectional movements of the microtubule-associated motors, dyneins, and kinesins, provide an important mechanism for the positioning of cellular organelles and molecules. An intriguing possibility is that this mechanism may underlie the directed transport and asymmetric positioning of morphogens that influence the development of multicellular embryos. In this report, we characterize the Drosophila gene, Dhc64C, that encodes a cytoplasmic dynein heavy chain polypeptide. The primary structure of the Drosophila cytoplasmic dynein heavy chain polypeptide has been determined by the isolation and sequence analysis of overlapping cDNA clones. Drosophila cytoplasmic dynein is highly similar in sequence and structure to cytoplasmic dynein isoforms reported for other organisms. The Dhc64C dynein transcript is differentially expressed during development with the highest levels being detected in the ovaries of adult females. Within the developing egg chambers of the ovary, the dynein gene is predominantly transcribed in the nurse cell complex. In contrast, the encoded dynein motor protein displays a striking accumulation in the single cell that will develop as the oocyte. The temporal and spatial pattern of dynein accumulation in the oocyte is remarkably similar to that of several maternal effect gene products that are essential for oocyte differentiation and axis specification. This distribution and its disruption by specific maternal effect mutations lends support to recent models suggesting that microtubule motors participate in the transport of these morphogens from the nurse cell cytoplasm to the oocyte.


2017 ◽  
Author(s):  
Pedro A. Gutierrez ◽  
Richard J. McKenney

AbstractCytoplasmic dynein is the primary minus-end directed microtubule motor protein in cells. LIS1 is a highly conserved dynein regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor, and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein regulatory factor, acts to release dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we find that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bind up to two LIS1 dimers, and mutational analysis suggests LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhances DDB velocity in a concentration dependent manner, in contrast to observations of LIS1’s effects on the motility of isolated dynein. Thus, LIS1 exerts concentration dependent effects on dynein motility, and can synergize with dynactin to enhance processive movement in the absence of load.


2021 ◽  
Author(s):  
John P Gillies ◽  
Janice M Reimer ◽  
Eva P Karasmanis ◽  
Indrajit Lahiri ◽  
Zaw Min Htet ◽  
...  

The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator that binds directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's β-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function. We present a model for the conserved role of Lis1 in regulating dynein from yeast to humans.


2019 ◽  
Author(s):  
Rongde Qiu ◽  
Jun Zhang ◽  
Xin Xiang

AbstractDeficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here we revealed the function of LIS1 in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans. Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this dramatic relocation requires LIS1 and its binding protein NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by specific mutations that open the auto-inhibited “phi-dynein” in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action: it promotes the switch of dynein from the auto-inhibited state to an open state to facilitate dynein activation.SummaryThis study reveals the role of Lissencephaly 1 (LIS1) in cargo-adapter-mediated dynein activation. Furthermore, it discovers a novel mechanism of LIS1 action involving a switch of dynein from an auto-inhibited state to an active state.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Cristine R. Casingal ◽  
Maria Luisa G. Daroy ◽  
Cynthia A. Mapua ◽  
Dianne Jane A. Florendo ◽  
Filipinas F. Natividad ◽  
...  

Background/Aims. Sortilin-related receptor 1 (SORL1) is involved in the neuronal transport processes and plays a role in the formation of amyloid plaques. This study investigated the association of 6 SORL1 single nucleotide polymorphisms (SNPs 8, 9, 10, 13, 19, and 23) with cognitive impairment (CI) in Filipinos. Methods. DNA samples from 484 subjects (100 Alzheimer’s Disease (AD) cases, 109 mild cognitive impairment (MCI) cases, 18 other types of CI, and 257 no dementia controls (NDC)) were genotyped using TaqMan SNP Genotyping Assays. Data Analysis. Our study showed strong linkage disequilibrium in the SNPs 8, 9, and 10 block. Our results showed that CI was significantly associated with SNPs 13 and 23. None of the SORL1 SNPs studied was associated with AD while SNPs 8, 9, 10, and 23 were associated with MCI. Conclusion. The findings had provided evidence that SORL1 may predispose individuals to CI. Further studies are needed to clarify the role of SORL1 in Filipinos with AD.


Sign in / Sign up

Export Citation Format

Share Document