scholarly journals Propelling and perturbing appendages together facilitate strenuous ground self-righting

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ratan Othayoth ◽  
Chen Li

Terrestrial animals must self-right when overturned on the ground, but this locomotor task is strenuous. To do so, the discoid cockroach often pushes its wings against the ground to begin a somersault which rarely succeeds. As it repeatedly attempts this, the animal probabilistically rolls to the side to self-right. During winged self-righting, the animal flails its legs vigorously. Here, we studied whether wing opening and leg flailing together facilitate strenuous ground self-righting. Adding mass to increase hind leg flailing kinetic energy increased the animal’s self-righting probability. We then developed a robot with similar strenuous self-righting behavior and used it as a physical model for systematic experiments. The robot’s self-righting probability increased with wing opening and leg flailing amplitudes. A potential energy landscape model revealed that, although wing opening did not generate sufficient kinetic energy to overcome the high pitch potential energy barrier to somersault, it reduced the barrier for rolling, facilitating the small kinetic energy from leg flailing to probabilistically overcome it to self-right. The model also revealed that the stereotyped body motion during self-righting emerged from physical interaction of the body and appendages with the ground. Our work demonstrated the usefulness of potential energy landscape for modeling self-righting transitions.

2021 ◽  
Author(s):  
Ratan Othayoth ◽  
Qihan Xuan ◽  
Chen Li

AbstractTerrestrial animals must self-right when overturned on the ground. To do so, the discoid cockroach often pushes its wings against the ground to begin a somersault but rarely succeeds in completing it. As it repeatedly attempts this, it probabilistically rolls to the side to self-right. Here, we studied whether seemingly wasteful leg flailing in this process helps. Adding mass to increase hind leg flailing kinetic energy fluctuation increased the animal’s self-righting probability. We then developed a robot with similar, strenuous self-righting behavior and used it as a physical model for systematic experiments. As legs flailed more vigorously and wings opened more, self-righting became more probable. A potential energy landscape model revealed that, although wing opening did not generate sufficient kinetic energy to overcome the high pitch potential energy barrier, it reduced barriers for rolling, facilitating the small kinetic energy fluctuation from leg flailing to probabilistically overcome roll barriers to self-right.Impact statementWhen overturned terrestrial animals self-right on the ground, their seemingly wasteful yet ubiquitous flailing of appendages is crucial in providing kinetic energy fluctuation to probabilistically overcome potential energy barriers.


2020 ◽  
Vol 117 (26) ◽  
pp. 14987-14995 ◽  
Author(s):  
Ratan Othayoth ◽  
George Thoms ◽  
Chen Li

Effective locomotion in nature happens by transitioning across multiple modes (e.g., walk, run, climb). Despite this, far more mechanistic understanding of terrestrial locomotion has been on how to generate and stabilize around near–steady-state movement in a single mode. We still know little about how locomotor transitions emerge from physical interaction with complex terrain. Consequently, robots largely rely on geometric maps to avoid obstacles, not traverse them. Recent studies revealed that locomotor transitions in complex three-dimensional (3D) terrain occur probabilistically via multiple pathways. Here, we show that an energy landscape approach elucidates the underlying physical principles. We discovered that locomotor transitions of animals and robots self-propelled through complex 3D terrain correspond to barrier-crossing transitions on a potential energy landscape. Locomotor modes are attracted to landscape basins separated by potential energy barriers. Kinetic energy fluctuation from oscillatory self-propulsion helps the system stochastically escape from one basin and reach another to make transitions. Escape is more likely toward lower barrier direction. These principles are surprisingly similar to those of near-equilibrium, microscopic systems. Analogous to free-energy landscapes for multipathway protein folding transitions, our energy landscape approach from first principles is the beginning of a statistical physics theory of multipathway locomotor transitions in complex terrain. This will not only help understand how the organization of animal behavior emerges from multiscale interactions between their neural and mechanical systems and the physical environment, but also guide robot design, control, and planning over the large, intractable locomotor-terrain parameter space to generate robust locomotor transitions through the real world.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Ratan Othayoth ◽  
Qihan Xuan ◽  
Yaqing Wang ◽  
Chen Li

To traverse complex three-dimensional terrain with large obstacles, animals and robots must transition across different modes. However, the most mechanistic understanding of terrestrial locomotion concerns how to generate and stabilize near-steady-state, single-mode locomotion (e.g. walk, run). We know little about how to use physical interaction to make robust locomotor transitions. Here, we review our progress towards filling this gap by discovering terradynamic principles of multi-legged locomotor transitions, using simplified model systems representing distinct challenges in complex three-dimensional terrain. Remarkably, general physical principles emerge across diverse model systems, by modelling locomotor–terrain interaction using a potential energy landscape approach. The animal and robots' stereotyped locomotor modes are constrained by physical interaction. Locomotor transitions are stochastic, destabilizing, barrier-crossing transitions on the landscape. They can be induced by feed-forward self-propulsion and are facilitated by feedback-controlled active adjustment. General physical principles and strategies from our systematic studies already advanced robot performance in simple model systems. Efforts remain to better understand the intelligence aspect of locomotor transitions and how to compose larger-scale potential energy landscapes of complex three-dimensional terrains from simple landscapes of abstracted challenges. This will elucidate how the neuromechanical control system mediates physical interaction to generate multi-pathway locomotor transitions and lead to advancements in biology, physics, robotics and dynamical systems theory.


Sign in / Sign up

Export Citation Format

Share Document