scholarly journals Chromatin structure-dependent histone incorporation revealed by a genome-wide deposition assay

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hiroaki Tachiwana ◽  
Mariko Dacher ◽  
Kazumitsu Maehara ◽  
Akihito Harada ◽  
Yosuke Seto ◽  
...  

In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.

2019 ◽  
Author(s):  
Hiroaki Tachiwana ◽  
Mariko Dacher ◽  
Kazumitsu Maehara ◽  
Akihito Harada ◽  
Yasuyuki Ohkawa ◽  
...  

AbstractIn eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. We found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that the condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. This led to the recapitulation of the pre-existing chromatin structure: the genome-wide even distribution of H2A and the exclusion of H2A.Z from the closed chromatin. Intriguingly, an H2A.Z mutant with mutations in the developmentally essential region was incorporated into closed chromatin. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition for maintaining the epigenetic chromatin states.


2021 ◽  
Vol 7 (24) ◽  
pp. eabg3097
Author(s):  
Bo Zhao ◽  
Yanpeng Xi ◽  
Junghyun Kim ◽  
Sibum Sung

Chromatin structure is critical for gene expression and many other cellular processes. In Arabidopsis thaliana, the floral repressor FLC adopts a self-loop chromatin structure via bridging of its flanking regions. This local gene loop is necessary for active FLC expression. However, the molecular mechanism underlying the formation of this class of gene loops is unknown. Here, we report the characterization of a group of linker histone-like proteins, named the GH1-HMGA family in Arabidopsis, which act as chromatin architecture modulators. We demonstrate that these family members redundantly promote the floral transition through the repression of FLC. A genome-wide study revealed that this family preferentially binds to the 5′ and 3′ ends of gene bodies. The loss of this binding increases FLC expression by stabilizing the FLC 5′ to 3′ gene looping. Our study provides mechanistic insights into how a family of evolutionarily conserved proteins regulates the formation of local gene loops.


Cell Cycle ◽  
2010 ◽  
Vol 9 (21) ◽  
pp. 4399-4410 ◽  
Author(s):  
Lijuan Ma ◽  
Yuanliang Zhai ◽  
Daorong Feng ◽  
Tsz-choi Chan ◽  
Yongjun Lu ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 2057-2068 ◽  
Author(s):  
Jessica R. Eisenstatt ◽  
Lars Boeckmann ◽  
Wei-Chun Au ◽  
Valerie Garcia ◽  
Levi Bursch ◽  
...  

The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1Δ strains display synthetic dosage lethality (SDL) with GALCSE4. We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4. We determined that cdc7-7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4. Mutation of MCM5 (mcm5-bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7-7 strain. We determined that mcm5-bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7-7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7-7 psh1Δ strain were similar to that of cdc7-7 and psh1Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1. Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.


2017 ◽  
Vol 114 (22) ◽  
pp. E4442-E4451 ◽  
Author(s):  
Tobias T. Schmidt ◽  
Gloria Reyes ◽  
Kerstin Gries ◽  
Cemile Ümran Ceylan ◽  
Sushma Sharma ◽  
...  

Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a “sensitized mutator background.” Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.


2018 ◽  
Author(s):  
Emily Yun-chia Chang ◽  
James P. Wells ◽  
Shu-Huei Tsai ◽  
Yan Coulombe ◽  
Yujia A. Chan ◽  
...  

SUMMARYEctopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors such as RAD50. We show in yeast and human cells that R-loops accumulate during RAD50 depletion. In human cancer cell models, we find that RAD50 and its partners in the MRE11-RAD50-NBS1 complex regulate R-loop-associated DNA damage and replication stress. We show that a non-nucleolytic function of MRE11 is important for R-loop suppression via activation of PCNA-ubiquitination by RAD18 and recruiting anti-R-loop helicases in the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms of transcription-replication conflicts.


2009 ◽  
Vol 87 (5) ◽  
pp. 799-815 ◽  
Author(s):  
Phoebe Y.T. Lu ◽  
Nancy Lévesque ◽  
Michael S. Kobor

Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.


2004 ◽  
Vol 51 (1) ◽  
pp. 1-8
Author(s):  
Piotr Widłak

The DNA microarray technology delivers an experimental tool that allows surveying expression of genetic information on a genome-wide scale at the level of single genes--for the new field termed functional genomics. Gene expression profiling--the primary application of DNA microarrays technology--generates monumental amounts of information concerning the functioning of genes, cells and organisms. However, the expression of genetic information is regulated by a number of factors that cannot be directly targeted by standard gene expression profiling. The genetic material of eukaryotic cells is packed into chromatin which provides the compaction and organization of DNA for replication, repair and recombination processes, and is the major epigenetic factor determining the expression of genetic information. Genomic DNA can be methylated and this modification modulates interactions with proteins which change the functional status of genes. Both chromatin structure and transcriptional activity are affected by the processes of replication, recombination and repair. Modified DNA microarray technology could be applied to genome-wide study of epigenetic factors and processes that modulate the expression of genetic information. Attempts to use DNA microarrays in studies of chromatin packing state, chromatin/DNA-binding protein distribution and DNA methylation pattern on a genome-wide scale are briefly reviewed in this paper.


2005 ◽  
Vol 27 (5-6) ◽  
pp. 327-334
Author(s):  
Jyoti P. Chaudhuri ◽  
Eva Kasprzycki ◽  
Mathew Battaglia ◽  
John R. McGill ◽  
Anton Brøgger ◽  
...  

Background and Aim: One of the two parental allelic genes may selectively be expressed, regulated by imprinting, X-inactivation or by other less known mechanisms. This study aims to reflect on such genetic mechanisms. Materials and Methods: Slides from short term cultures or direct smears of blood, bone marrow and amniotic fluids were hybridized with FISH probes singly, combined or sequentially. Two to three hundred cells were examined from each preparation. Results and Aignificance: A small number of cells (up to about 5%), more frequent in leukemia cases, showed the twin features: (1) nuclei with biphasic chromatin, one part decondensed and the other condensed; and (2) homologous FISH signals distributed equitably in those two regions. The biphasic chromatin structure with equitable distribution of the homologous FISH signals may correspond to the two sets of chromosomes, supporting observations on ploidywise intranuclear order. The decondensed chromatin may relate to enhanced transcriptions or advanced replications. Conclusions: Transcriptions of only one of the two parental genomes cause allelic exclusion. Genomes may switch with alternating monoallelic expression of biallelic genes as an efficient genetic mechanism. If genomes fail to switch, allelic exclusion may lead to malignancy. Similarly, a genome-wide monoallelic replication may tilt the balance of heterozygosity resulting in aneusomy, initiating early events in malignant transformation and in predicting cancer mortality.


Sign in / Sign up

Export Citation Format

Share Document