floral repressor
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 2)

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1286
Author(s):  
Joon Ki Hong ◽  
Eun Jung Suh ◽  
Sang Ryeol Park ◽  
Jihee Park ◽  
Yeon-Hee Lee

The VERNALIZATION1 (VRN1) gene is a crucial transcriptional repressor involved in triggering the transition to flowering in response to prolonged cold. To develop Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants with delayed flowering time, we designed a multiplex CRISPR/Cas9 platform that allows the co-expression of four sgRNAs targeting different regions of the endogenous BrVRN1 gene delivered via a single binary vector built using the Golden Gate cloning system. DNA sequencing analysis revealed site-directed mutations at two target sites: gRNA1 and gRNA2. T1 mutant plants with a 1-bp insertion in BrVRN1 exhibited late flowering after the vernalization. Additionally, we identified ‘transgene-free’ BrVRN1 mutant plants without any transgenic elements from the GE1 (gene-editing 1) and GE2 generations. All GE2 mutant plants contained successful edits in two out of three BrVRN1 orthologs and displayed delayed flowering time. In GE2 mutant plants, the floral repressor gene FLC1 was expressed during vernalization; but the floral integrator gene FT was not expressed after vernalization. Taken together, our data indicate that the BrVRN1 genes act as negative regulators of FLC1 expression during vernalization in Chinese cabbage, raising the possibility that the ‘transgene-free’ mutants of BrVRN1 developed in this study may serve as useful genetic resources for crop improvement with respect to flowering time regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hayato Yoshioka ◽  
Keiko Kimura ◽  
Yuko Ogo ◽  
Namie Ohtsuki ◽  
Ayako Nishizawa-Yokoi ◽  
...  

Flowering is an important biological process through which plants determine the timing of reproduction. In rice, florigen mRNA is induced more strongly when the day length is shorter than the critical day length through recognition of 30-min differences in the photoperiod. Grain number, plant height, and heading date 7 (Ghd7), which encodes a CCT-domain protein unique to monocots, has been identified as a key floral repressor in rice, and Heading date 1 (Hd1), a rice ortholog of the Arabidopsis floral activator CONSTANS (CO), is another key floral regulator gene. The Hd1 gene product has been shown to interact with the Ghd7 gene product to form a strong floral repressor complex under long-day conditions. However, the mRNA dynamics of these genes cannot explain the day-length responses of their downstream genes. Thus, a real-time monitoring system of these key gene products is needed to elucidate the molecular mechanisms underlying accurate photoperiod recognition in rice. Here, we developed a monitoring system using luciferase (LUC) fusion protein lines derived from the Ghd7-LUC and Hd1-LUC genes. We successfully obtained a functionally complemented gene-targeted line for Ghd7-LUC. Using this system, we found that the Ghd7-LUC protein begins to accumulate rapidly after dawn and reaches its peak more rapidly under a short-day condition than under a long-day condition. Our system provides a powerful tool for revealing the accurate time-keeping regulation system incorporating these key gene products involved in rice photoperiodic flowering.


2021 ◽  
Author(s):  
Jiafu Jiang ◽  
Zixin Zhang ◽  
Qian Hu ◽  
Yuqing Zhu ◽  
Zheng Gao ◽  
...  

Plant flowering time is a consequence of the perception of environmental and endogenous signals. The MCM1-AGAMOUSDEFICIENS-SRF-box (MADS-box) gene SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase. The transcriptional corepressor TOPLESS (TPL) plays critical roles in many aspects of plant life. An interaction first identified between the second LXLXLX motif (LRLGLP) of CmSVP with CmTPL1-2, which can repress the expression of a key flowering factor CmFTL3 by binding its promotor CArG element in chrysanthemum. Genetic analysis suggested that the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for SVP to act as a floral repressor, which reduces CmFTL3 transcriptional activity. CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis, and overexpression of AtSVP or CmSVP in the Arabidopsis dominant negative mutation tpl-1 led to a loss-of-function in late flowering, which confirmed the highly conserved function of SVP in the two completely different species. Thus, we have validated a conserved machinery wherein SVP relies on TPL to inhibit flowering through the direct regulation of FT, which is more meaningful for the evolution of species and could be translated to high-quality cultivation and breeding of crops.


2021 ◽  
Vol 118 (47) ◽  
pp. e2113757118
Author(s):  
Congyao Xu ◽  
Xiaofeng Fang ◽  
Tiancong Lu ◽  
Caroline Dean

Quantitative transcriptional control is essential for physiological and developmental processes in many organisms. Transcriptional output is influenced by cotranscriptional processes interconnected to chromatin regulation, but how the functions of different cotranscriptional regulators are integrated is poorly understood. The Arabidopsis floral repressor locus FLOWERING LOCUS C (FLC) is cotranscriptionally repressed by alternative processing of the antisense transcript COOLAIR. Proximal 3′-end processing of COOLAIR resolves a cotranscriptionally formed R-loop, and this process physically links to a histone-modifying complex FLD/SDG26/LD. This induces a chromatin environment locally that determines low transcription initiation and a slow elongation rate to both sense and antisense strands. Here, we show that ARGONAUTE1 (AGO1) genetically functions in this cotranscriptional repression mechanism. AGO1 associates with COOLAIR and influences COOLAIR splicing dynamics to promote proximal COOLAIR, R-loop resolution, and chromatin silencing. Proteomic analyses revealed physical associations between AGO1, subunits of RNA Polymerase II (Pol II), the splicing-related proteins—the spliceosome NineTeen Complex (NTC) and related proteins (NTR)—and the THO/TREX complex. We connect these activities by demonstrating that the THO/TREX complex activates FLC expression acting antagonistically to AGO1 in COOLAIR processing. Together these data reveal that antagonistic cotranscriptional regulation through AGO1 or THO/TREX influences COOLAIR processing to deliver a local chromatin environment that determines FLC transcriptional output. The involvement of these conserved cotranscriptional regulators suggests similar mechanisms may underpin quantitative transcriptional regulation generally.


Nature ◽  
2021 ◽  
Author(s):  
Pan Zhu ◽  
Clare Lister ◽  
Caroline Dean

AbstractPlants use seasonal temperature cues to time the transition to reproduction. In Arabidopsis thaliana, winter cold epigenetically silences the floral repressor locus FLOWERING LOCUS C (FLC) through POLYCOMB REPRESSIVE COMPLEX 2 (PRC2)1. This vernalization process aligns flowering with spring. A prerequisite for silencing is transcriptional downregulation of FLC, but how this occurs in the fluctuating temperature regimes of autumn is unknown2–4. Transcriptional repression correlates with decreased local levels of histone H3 trimethylation at K36 (H3K36me3) and H3 trimethylation at K4 (H3K4me3)5,6, which are deposited during FRIGIDA (FRI)-dependent activation of FLC7–10. Here we show that cold rapidly promotes the formation of FRI nuclear condensates that do not colocalize with an active FLC locus. This correlates with reduced FRI occupancy at the FLC promoter and FLC repression. Warm temperature spikes reverse this process, buffering FLC shutdown to prevent premature flowering. The accumulation of condensates in the cold is affected by specific co-transcriptional regulators and cold induction of a specific isoform of the antisense RNA COOLAIR5,11. Our work describes the dynamic partitioning of a transcriptional activator conferring plasticity in response to natural temperature fluctuations, thus enabling plants to effectively monitor seasonal progression.


2021 ◽  
Author(s):  
Myeongjune Jeon ◽  
Goowon Jeong ◽  
Youbong Hyun ◽  
Ilha Lee

Many plants undergo vernalization, a long-term winter-triggered acceleration of flowering, to align their flowering time with spring. In Arabidopsis thaliana, this is achieved by silencing a floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, an antisense noncoding RNA expressed at the FLC locus, is induced during the early phase of vernalization, preceding FLC suppression. However, the mechanism by which long-term cold induces COOLAIR is not well understood. Here, we showed that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3′-end of FLC and CRT/DRE-binding factors (CBFs) are required for vernalization-induced COOLAIR activation. The CBFs bind to CRT/DREs at the 3′-end of FLC, both in vitro and in vivo, and the CBFs levels increased gradually during vernalization. Additionally, vernalization-induced COOLAIR expression was highly suppressed in the cbfs mutant, in which all CBFs were knocked-out. Contrastingly, CBF-overexpressing plants showed COOLAIR upregulation, even at warm temperatures. We propose that COOLAIR is induced by CBFs in the early phase of vernalization but is downregulated as CBFs are evicted from closed FLC chromatin during the late vernalization phase. We also demonstrated that cbfs and COOLAIR mutants have a normal vernalization response, although they show defects in vernalization-induced COOLAIR activation, indicating that COOLAIR is not necessary for this process.


2021 ◽  
Vol 571 ◽  
pp. 32-37
Author(s):  
Meifang Peng ◽  
Feng Gan ◽  
Feng Yang ◽  
Chunmei Pan ◽  
Xiaomin Lin ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Greg S. Goralogia ◽  
Glenn T. Howe ◽  
Amy M. Brunner ◽  
Emily Helliwell ◽  
Michael F. Nagle ◽  
...  

AbstractThe spread of transgenes and exotic germplasm from planted crops into wild or feral species is a difficult problem for public and regulatory acceptance of genetically engineered plants, particularly for wind-pollinated trees such as poplar. We report that overexpression of a poplar homolog of the floral repressor SHORT VEGETATIVE PHASE-LIKE (SVL), a homolog of the Arabidopsis MADS-box repressor SHORT VEGETATIVE PHASE (SVP), delayed the onset of flowering several years in three genotypes of field-grown transgenic poplars. Higher expression of SVL correlated with a delay in flowering onset and lower floral abundance, and did not cause morphologically obvious or statistically significant effects on leaf characteristics, tree form, or stem volume. Overexpression effects on reproductive and vegetative phenology in spring was modest and genotype-specific. Our results suggest that use of SVL and related floral repressors can be useful tools to enable a high level of containment for vegetatively propagated short-rotation woody energy or pulp crops.


2021 ◽  
Vol 118 (28) ◽  
pp. e2107483118
Author(s):  
Colette L. Baxter ◽  
Saša Šviković ◽  
Julian E. Sale ◽  
Caroline Dean ◽  
Silvia Costa

How noncoding transcription influences chromatin states is still unclear. The Arabidopsis floral repressor gene FLC is quantitatively regulated through an antisense-mediated chromatin silencing mechanism. The FLC antisense transcripts form a cotranscriptional R-loop that is dynamically resolved by RNA 3′ processing factors (FCA and FY), and this is linked to chromatin silencing. Here, we investigate this silencing mechanism and show, using single-molecule DNA fiber analysis, that FCA and FY are required for unimpeded replication fork progression across the Arabidopsis genome. We then employ the chicken DT40 cell line system, developed to investigate sequence-dependent replication and chromatin inheritance, and find that FLC R-loop sequences have an orientation-dependent ability to stall replication forks. These data suggest a coordination between RNA 3′ processing of antisense RNA and replication fork progression in the inheritance of chromatin silencing at FLC.


Sign in / Sign up

Export Citation Format

Share Document