scholarly journals An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Giulia Bandini ◽  
Sebastian Damerow ◽  
Maria Lucia Sempaio Guther ◽  
Hongjie Guo ◽  
Angela Mehlert ◽  
...  

Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.

2019 ◽  
Author(s):  
Giulia Bandini ◽  
Sebastian Damerow ◽  
Maria Lucia Sampaio Güther ◽  
Angela Mehlert ◽  
Hongjie Guo ◽  
...  

ABSTRACTThe biosynthesis of guanosine 5′-diphospho-β-L-fucose (GDP-Fuc), the activated donor for fucose, has been shown to be essential in the parasite Trypanosoma brucei. Fucose is a common constituent of eukaryotic glycan structures, but it has been rarely found in trypanosomatid glycoconjugates. A single putative T. brucei fucosyltransferase (TbFUT1) gene was identified in the trypanosome genome. The encoded TbFUT1 protein was enzymatically active when expressed in Escherichia coli. Structural characterization of its reaction products identified it as a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase, with a preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif among the substrates tested. Conditional null mutants of the TbFUT1 gene demonstrated that it is essential for growth of the mammalian-infective bloodstream form and insect vector dwelling procyclic form of the parasite. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be essential for mitochondrial function in bloodstream form trypanosomes, suggesting this kinetoplastid parasite possesses an unprecedented and essential mitochondrial fucosyltransferase activity.SIGNIFICANCEThe sugar fucose is a well-known component of cell-surface glycoproteins and glycolipids and typically plays roles in cell-cell adhesion. Fucose is generally incorporated into glycoproteins and glycolipids by fucosyltransferase enzymes that reside in the Golgi apparatus. Here we show that the single fucosyltransferase of the protozoan parasite Trypanosoma brucei, causative agent of human and animal African trypanosomiasis, resides in the mitochondrion and not the Golgi apparatus. While the exact role of fucosylation in the parasite mitochondrion remains to be determined, it is essential for mitochondrial function and for parasite growth and survival. The unusual nature of this parasite enzyme, and its orthologues in related parasite pathogens, suggests that selective inhibitors may have therapeutic potential across a family of parasites.


2021 ◽  
Vol 15 (2) ◽  
pp. e0009132 ◽  
Author(s):  
Maria Lucia Sampaio Guther ◽  
Alan R. Prescott ◽  
Sabine Kuettel ◽  
Michele Tinti ◽  
Michael A. J. Ferguson

In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Xuan Zhang ◽  
Tai An ◽  
Kieu T. M. Pham ◽  
Zhao-Rong Lun ◽  
Ziyin Li

ABSTRACT The early divergent protozoan parasite Trypanosoma brucei alternates between the insect vector and the mammalian hosts during its life cycle and proliferates through binary cell fission. The cell cycle control system in T. brucei differs substantially from that in its mammalian hosts and possesses distinct mitosis-cytokinesis checkpoint controls between two life cycle stages, the procyclic form and the bloodstream form. T. brucei undergoes an unusual mode of cytokinesis, which is controlled by a novel signaling cascade consisting of evolutionarily conserved protein kinases and trypanosome-specific regulatory proteins in the procyclic form. However, given the distinct mitosis-cytokinesis checkpoints between the two forms, it is unclear whether the cytokinesis regulatory pathway discovered in the procyclic form also operates in a similar manner in the bloodstream form. Here, we showed that the three regulators of cytokinesis initiation, cytokinesis initiation factor 1 (CIF1), CIF2, and CIF3, are interdependent for subcellular localization but not for protein stability as in the procyclic form. Further, we demonstrated that KLIF, a regulator of cytokinesis completion in the procyclic form, plays limited roles in cytokinesis in the bloodstream form. Finally, we showed that the cleavage furrow-localizing protein FRW1 is required for cytokinesis initiation in the bloodstream form but is nonessential for cytokinesis in the procyclic form. Together, these results identify conserved and life cycle-specific functions of cytokinesis regulators, highlighting the distinction in the regulation of cytokinesis between different life cycle stages of T. brucei. IMPORTANCE The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 683 ◽  
Author(s):  
Terry K. Smith ◽  
Frédéric Bringaud ◽  
Derek P. Nolan ◽  
Luisa M. Figueiredo

Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.


2006 ◽  
Vol 396 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Chrysoula Panethymitaki ◽  
Paul W. Bowyer ◽  
Helen P. Price ◽  
Robin J. Leatherbarrow ◽  
Katherine A. Brown ◽  
...  

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 μM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16–66 μM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


2007 ◽  
Vol 75 (9) ◽  
pp. 4629-4637 ◽  
Author(s):  
Althea A. Capul ◽  
Suzanne Hickerson ◽  
Tamara Barron ◽  
Salvatore J. Turco ◽  
Stephen M. Beverley

ABSTRACT Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(β1,4)Man(α1-PO4)]-derived repeating units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus. Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able to persist indefinitely and induce protective immunity. However, lpg2 − L. mexicana amastigotes similarly lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the phenotype of L. major lpg2 −, instead resembling the L. major lipophosphoglycan-deficient lpg1 − mutant. Metacyclic lpg5A −/lpg5B − promastigotes showed strong defects in the initial steps of macrophage infection and survival. However, after a modest delay, the lpg5A − /lpg5B − mutant induced lesion pathology in infected mice, which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic mannans. These data thus resolve the distinct phenotypes seen among lpg2 − Leishmania species by emphasizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for the role of PGs in metacyclic promastigote virulence.


Sign in / Sign up

Export Citation Format

Share Document