scholarly journals Report of the NAMMCO-ICES Workshop on Seal Modelling (WKSEALS 2020)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sophie Smout ◽  
Kimberly Murray ◽  
Geert Aarts ◽  
Martin Biuw ◽  
Sophie Brasseur ◽  
...  

To support sustainable management of apex predator populations, it is important to estimate population size and understand the drivers of population trends to anticipate the consequences of human decisions. Robust population models are needed, which must be based on realistic biological principles and validated with the best available data. A team of international experts reviewed age-structured models of North Atlantic pinniped populations, including Grey seal (Halichoerus grypus), Harp seal (Pagophilus groenlandicus), and Hooded seal (Cystophora cristata). Statistical methods used to fit such models to data were compared and contrasted. Differences in biological assumptions and model equations were driven by the data available from separate studies, including observation methodology and pre-processing. Counts of pups during the breeding season were used in all models, with additional counts of adults and juveniles available in some. The regularity and frequency of data collection, including survey counts and vital rate estimates, varied. Important differences between the models concerned the nature and causes of variation in vital rates (age-dependent survival and fecundity). Parameterisation of age at maturity was detailed and time-dependent in some models and simplified in others. Methods for estimation of model parameters were reviewed and compared. They included Bayesian and maximum likelihood (ML) approaches, implemented via bespoke coding in C, C++, TMB or JAGS. Comparative model runs suggested that as expected, ML-based implementations were rapid and computationally efficient, while Bayesian approaches, which used MCMC or sequential importance sampling, required longer for inference. For grey seal populations in the Netherlands, where preliminary ML-based TMB results were compared with the outputs of a Bayesian JAGS implementation, some differences in parameter estimates were apparent. For these seal populations, further investigations are recommended to explore differences that might result from the modelling framework and model-fitting methodology, and their importance for inference and management advice. The group recommended building on the success of this workshop via continued collaboration with ICES and NAMMCO assessment groups, as well as other experts in the marine mammal modelling community. Specifically, for Northeast Atlantic harp and hooded seal populations, the workshop represents the initial step towards a full ICES benchmark process aimed at revising and evaluating new assessment models.

2006 ◽  
Vol 84 (11) ◽  
pp. 1698-1701
Author(s):  
J. Fieberg ◽  
D.F. Staples

Hierarchical / random effect models provide a statistical framework for estimating variance parameters that describe temporal and spatial variability of vital rates in population dynamic models. In practice, estimates of variance parameters (e.g., process error) from these models are often confused with estimates of uncertainty about model parameter estimates (e.g., standard errors). These two sources of “error” have different implications for predictions from stochastic models. Estimates of process error (or variability) are useful for describing the magnitude of variation in vital rates over time and are a feature of the modeled process itself, whereas estimates of parameter standard errors (or uncertainty) are necessary for interpreting how well we are able to estimate model parameters and whether they differ among groups. The goal of this comment is to illustrate these concepts in the context of a recent paper by A.W. Reed and N.A. Slade (Can. J. Zool. 84: 635–642 (2006)) . In particular, we will show that their “hypothesis tests” involving mean parameters are actually comparisons of the estimated distributions of vital rates among groups of individuals.


2020 ◽  
Vol 5 ◽  
Author(s):  
Nikolai Bode

Simulation models for pedestrian crowds are a ubiquitous tool in research and industry. It is crucial that the parameters of these models are calibrated carefully and ultimately it will be of interest to compare competing models to decide which model is best suited for a particular purpose. In this contribution, I demonstrate how Approximate Bayesian Computation (ABC), which is already a popular tool in other areas of science, can be used for model fitting and model selection in a pedestrian dynamics context. I fit two different models for pedestrian dynamics to data on a crowd passing in one direction through a bottleneck. One model describes movement in continuous-space, the other model is a cellular automaton and thus describes movement in discrete-space. In addition, I compare models to data using two metrics. The first is based on egress times and the second on the velocity of pedestrians in front of the bottleneck. My results show that while model fitting is successful, a substantial degree of uncertainty about the value of some model parameters remains after model fitting. Importantly, the choice of metric in model fitting can influence parameter estimates. Model selection is inconclusive for the egress time metric but supports the continuous-space model for the velocity-based metric. These findings show that ABC is a flexible approach and highlights the difficulties associated with model fitting and model selection for pedestrian dynamics. ABC requires many simulation runs and choosing appropriate metrics for comparing data to simulations requires careful attention. Despite this, I suggest ABC is a promising tool, because it is versatile and easily implemented for the growing number of openly available crowd simulators and data sets.


2018 ◽  
Author(s):  
Josephine Ann Urquhart ◽  
Akira O'Connor

Receiver operating characteristics (ROCs) are plots which provide a visual summary of a classifier’s decision response accuracy at varying discrimination thresholds. Typical practice, particularly within psychological studies, involves plotting an ROC from a limited number of discrete thresholds before fitting signal detection parameters to the plot. We propose that additional insight into decision-making could be gained through increasing ROC resolution, using trial-by-trial measurements derived from a continuous variable, in place of discrete discrimination thresholds. Such continuous ROCs are not yet routinely used in behavioural research, which we attribute to issues of practicality (i.e. the difficulty of applying standard ROC model-fitting methodologies to continuous data). Consequently, the purpose of the current article is to provide a documented method of fitting signal detection parameters to continuous ROCs. This method reliably produces model fits equivalent to the unequal variance least squares method of model-fitting (Yonelinas et al., 1998), irrespective of the number of data points used in ROC construction. We present the suggested method in three main stages: I) building continuous ROCs, II) model-fitting to continuous ROCs and III) extracting model parameters from continuous ROCs. Throughout the article, procedures are demonstrated in Microsoft Excel, using an example continuous variable: reaction time, taken from a single-item recognition memory. Supplementary MATLAB code used for automating our procedures is also presented in Appendix B, with a validation of the procedure using simulated data shown in Appendix C.


Author(s):  
Marcello Pericoli ◽  
Marco Taboga

Abstract We propose a general method for the Bayesian estimation of a very broad class of non-linear no-arbitrage term-structure models. The main innovation we introduce is a computationally efficient method, based on deep learning techniques, for approximating no-arbitrage model-implied bond yields to any desired degree of accuracy. Once the pricing function is approximated, the posterior distribution of model parameters and unobservable state variables can be estimated by standard Markov Chain Monte Carlo methods. As an illustrative example, we apply the proposed techniques to the estimation of a shadow-rate model with a time-varying lower bound and unspanned macroeconomic factors.


2020 ◽  
Vol 70 (1) ◽  
pp. 145-161 ◽  
Author(s):  
Marnus Stoltz ◽  
Boris Baeumer ◽  
Remco Bouckaert ◽  
Colin Fox ◽  
Gordon Hiscott ◽  
...  

Abstract We describe a new and computationally efficient Bayesian methodology for inferring species trees and demographics from unlinked binary markers. Likelihood calculations are carried out using diffusion models of allele frequency dynamics combined with novel numerical algorithms. The diffusion approach allows for analysis of data sets containing hundreds or thousands of individuals. The method, which we call Snapper, has been implemented as part of the BEAST2 package. We conducted simulation experiments to assess numerical error, computational requirements, and accuracy recovering known model parameters. A reanalysis of soybean SNP data demonstrates that the models implemented in Snapp and Snapper can be difficult to distinguish in practice, a characteristic which we tested with further simulations. We demonstrate the scale of analysis possible using a SNP data set sampled from 399 fresh water turtles in 41 populations. [Bayesian inference; diffusion models; multi-species coalescent; SNP data; species trees; spectral methods.]


2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Arun V. Kolanjiyil ◽  
Clement Kleinstreuer

This is the second article of a two-part paper, combining high-resolution computer simulation results of inhaled nanoparticle deposition in a human airway model (Kolanjiyil and Kleinstreuer, 2013, “Nanoparticle Mass Transfer From Lung Airways to Systemic Regions—Part I: Whole-Lung Aerosol Dynamics,” ASME J. Biomech. Eng., 135(12), p. 121003) with a new multicompartmental model for insoluble nanoparticle barrier mass transfer into systemic regions. Specifically, it allows for the prediction of temporal nanoparticle accumulation in the blood and lymphatic systems and in organs. The multicompartmental model parameters were determined from experimental retention and clearance data in rat lungs and then the validated model was applied to humans based on pharmacokinetic cross-species extrapolation. This hybrid simulator is a computationally efficient tool to predict the nanoparticle kinetics in the human body. The study provides critical insight into nanomaterial deposition and distribution from the lungs to systemic regions. The quantitative results are useful in diverse fields such as toxicology for exposure-risk analysis of ubiquitous nanomaterial and pharmacology for nanodrug development and targeting.


1991 ◽  
Vol 18 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Murray A. Fitch ◽  
Edward A. McBean

A model is developed for the prediction of river flows resulting from combined snowmelt and precipitation. The model employs a Kalman filter to reflect uncertainty both in the measured data and in the system model parameters. The forecasting algorithm is used to develop multi-day forecasts for the Sturgeon River, Ontario. The algorithm is shown to develop good 1-day and 2-day ahead forecasts, but the linear prediction model is found inadequate for longer-term forecasts. Good initial parameter estimates are shown to be essential for optimal forecasting performance. Key words: Kalman filter, streamflow forecast, multi-day, streamflow, Sturgeon River, MISP algorithm.


2011 ◽  
Vol 64 (S1) ◽  
pp. S3-S18 ◽  
Author(s):  
Yuanxi Yang ◽  
Jinlong Li ◽  
Junyi Xu ◽  
Jing Tang

Integrated navigation using multiple Global Navigation Satellite Systems (GNSS) is beneficial to increase the number of observable satellites, alleviate the effects of systematic errors and improve the accuracy of positioning, navigation and timing (PNT). When multiple constellations and multiple frequency measurements are employed, the functional and stochastic models as well as the estimation principle for PNT may be different. Therefore, the commonly used definition of “dilution of precision (DOP)” based on the least squares (LS) estimation and unified functional and stochastic models will be not applicable anymore. In this paper, three types of generalised DOPs are defined. The first type of generalised DOP is based on the error influence function (IF) of pseudo-ranges that reflects the geometry strength of the measurements, error magnitude and the estimation risk criteria. When the least squares estimation is used, the first type of generalised DOP is identical to the one commonly used. In order to define the first type of generalised DOP, an IF of signal–in-space (SIS) errors on the parameter estimates of PNT is derived. The second type of generalised DOP is defined based on the functional model with additional systematic parameters induced by the compatibility and interoperability problems among different GNSS systems. The third type of generalised DOP is defined based on Bayesian estimation in which the a priori information of the model parameters is taken into account. This is suitable for evaluating the precision of kinematic positioning or navigation. Different types of generalised DOPs are suitable for different PNT scenarios and an example for the calculation of these DOPs for multi-GNSS systems including GPS, GLONASS, Compass and Galileo is given. New observation equations of Compass and GLONASS that may contain additional parameters for interoperability are specifically investigated. It shows that if the interoperability of multi-GNSS is not fulfilled, the increased number of satellites will not significantly reduce the generalised DOP value. Furthermore, the outlying measurements will not change the original DOP, but will change the first type of generalised DOP which includes a robust error IF. A priori information of the model parameters will also reduce the DOP.


2017 ◽  
Vol 17 (6) ◽  
pp. 401-422 ◽  
Author(s):  
Buu-Chau Truong ◽  
Cathy WS Chen ◽  
Songsak Sriboonchitta

This study proposes a new model for integer-valued time series—the hysteretic Poisson integer-valued generalized autoregressive conditionally heteroskedastic (INGARCH) model—which has an integrated hysteresis zone in the switching mechanism of the conditional expectation. Our modelling framework provides a parsimonious representation of the salient features of integer-valued time series, such as discreteness, over-dispersion, asymmetry and structural change. We adopt Bayesian methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize the Bayesian information criteria for model comparison. We then apply the proposed model to five real time series of criminal incidents recorded by the New South Wales Police Force in Australia. Simulation results and empirical analysis highlight the better performance of hysteresis in modelling the integer-valued time series.


Sign in / Sign up

Export Citation Format

Share Document