Magnon–Photon Coupling in a Spinel Ferrite with Large Gilbert Damping

2021 ◽  
Vol 90 (8) ◽  
pp. 083702
Author(s):  
Hidetoshi Kosaki ◽  
Maki Umeda ◽  
Eiji Saitoh ◽  
Yuki Shiomi
2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2021 ◽  
Vol 163 ◽  
pp. 106795
Author(s):  
Jian-ming Gao ◽  
Wenjie Li ◽  
Shujia Ma ◽  
Zongyuan Du ◽  
Fangqin Cheng

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Clayton Ristow

Abstract We present the supernova constraints on an axion-photon-dark photon coupling, which can be the leading coupling to dark sector models and can also lead to dramatic changes to axion cosmology. We show that the supernova bound on this coupling has two unusual features. One occurs because the scattering that leads to the trapping regime converts axions and dark photons into each other. Thus, if one of the two new particles is sufficiently massive, both production and scattering become suppressed and the bounds from bulk emission and trapped (area) emission both weaken exponentially and do not intersection The other unusual feature occurs because for light dark photons, longitudinal modes couple more weakly than transverse modes do. Since the longitudinal mode is more weakly coupled, it can still cause excessive cooling even if the transverse mode is trapped. Thus, the supernova constraints for massive dark photons look like two independent supernova bounds super-imposed on top of each other.


2021 ◽  
pp. 159334
Author(s):  
Harun Bayrakdar ◽  
Orhan Yalçın ◽  
Songül Özüm ◽  
Uğur Cengiz

Sign in / Sign up

Export Citation Format

Share Document