Coercive force of Co–Ni–Li spinel ferrite particles synthesized through co-precipitation, hydrothermal treatment, and etching in hydrochloric acid

2020 ◽  
Vol 59 (8) ◽  
pp. 085002
Author(s):  
Mikio Kishimoto ◽  
Eiji Kita ◽  
Hideto Yanagihara
2018 ◽  
Vol 56 (1) ◽  
pp. 31
Author(s):  
Luong Thi Quynh Anh ◽  
Nguyen Van Dan ◽  
Do Minh Nghiep

The crystalline nanoparticles of Ni0.2Zn0.8Fe2O4 ferrite were synthesized by chemical co-precipitation with precursor concentration of 0.1M, then modified by 0.25M solution of oleic acid in pentanol, finally heated at temperatures 120, 140, 160 and 180oC for 6h in autoclave. The XRD, EDS and TEM confirmed that all of samples are crystalline and their particle size are 6, 6.5, 7 and 8 nm. The magnetic properties showed that the coercive force, the remanence of samples are about zero, the saturation magnetization Ms has values from 14.20 to 27.12 emu/g.


2015 ◽  
Vol 15 (7) ◽  
pp. 5159-5162 ◽  
Author(s):  
Young Mi Kim ◽  
Ju-Hee Kang ◽  
Min-Young Kim ◽  
Bum Ho Choi ◽  
Moo Sung Lee ◽  
...  

2008 ◽  
Vol 8 (8) ◽  
pp. 4181-4187 ◽  
Author(s):  
T. K. Pathak ◽  
J. J. U. Buch ◽  
U. N. Trivedi ◽  
H. H. Joshi ◽  
K. B. Modi

Nanoparticles having particle size in the range 25–40 nm for compositions x = 0.0, 0.2, 0.4 and 0.5 of MgxMn1−xFe2O4 spinel ferrite system have been prepared by chemical co-precipitation route. The microstructure, infrared spectral and elastic properties have been studied by means of energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and infrared spectroscopic (IR) measurements, before (W) and after high temperature annealing A(W). The force constants for tetrahedral and octahedral sites determined by infrared spectral analysis, lattice constant and X-ray density values by X-ray diffraction pattern analysis; have been used to calculate elastic constants. The magnitude of force constant and elastic moduli for nanocrystalline W-samples are found to be larger as compared to coarse grained A(W)-samples. The results have been explained in the light of redistribution of cations and as a result change in mean ionic charge for such cationic sites, elastic energy and grain size reduction effect of Nanoparticles.


2009 ◽  
Vol 23 (03) ◽  
pp. 365-374 ◽  
Author(s):  
P. MATHUR ◽  
A. THAKUR ◽  
M. SINGH

Mn 0.4 Cu 0.4 Zn 0.2 Fe ferrite was synthesized by soft chemical approach called co-precipitation technique. The ferrite powder was calcined, compacted and sintered at 700°C and 800°C for 3 h. The initial permeability, density, grain size, Curie temperature and dc resistivity have been studied. X-ray diffraction (XRD) method confirmed the sample to be a single-phase spinel structure without unreacted constituents. The particle size was calculated from XRD spectrum using Scherrer's formula and found to be ~55 nm. Then, nanoparticles were observed with tunneling electron microscopy (TEM). Further, scanning electron micrograph (SEM) also confirmed nano-phase and the uniformity of the particles. The initial permeability values do not exhibit much variation with temperature, except near Curie temperature, where it falls sharply. The initial permeability is found to increase with the increase in sintering temperature. This is attributed to the increase in the grain size. Calculation of activation energy indicates that the given ferrite is p-type semiconductor. Mössbauer study of these samples shows superparamagnetic behavior, which also confirms the formation of nano-particles. Possible models and mechanisms contributing to these processes have been discussed.


2009 ◽  
Vol 19 (1) ◽  
pp. 19-25
Author(s):  
Pham Hoai Linh ◽  
Tran Dang Thanh ◽  
Do Hung Manh ◽  
Nguyen Chi Thuan ◽  
Le Van Hong ◽  
...  

In this paper, we report results on the fabrication and magnetic properties of spinel ferrite Mn1-xZnxFe2O4 (0 ≤ x ≤ 0.8) nanoparticles. The nanoparticles were synthesized by a co-precipitation method. The effects of substituting Zn for Mn on the magnetic properties and particles size were focused. It was found that the phase-formation temperature is 90OC and the average particle size decreases from 40 nm to 10 nm when increased Zn concentration from zero to 0.8. The Curie temperature TC strongly decreases from 585 K (x = 0) to 320 K (x = 0.8) concomitantly with a decrease of the saturation magnetization MS. With a TC of 320 K and MS of 17 emu/g, the x=0.8 sample could be a promising candidate for some biomedical applications.


Author(s):  
R. M. Rosnan ◽  
Zulkafli Othman ◽  
A. A. Ati

This study evaluates the morphology and structural properties of Ni-Mg substituted Cobalt ferrite samples prepared through the co-precipitation method. The nominal composition of Co0.5Ni0.5−xMgx Fe2O4 in the range x = 0.1 have been synthesized and then were sintered at temperature 700 and 1000°C for 10 hour with a heating rate of 5°C/min. The prepared nano-ferrites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). XRD confirmed formation of single phase spinel ferrite with average crystalline size in the range of 40–120 nm. Further information about the structure and morphology of the nanoferrites was obtained from FESEM and results are in good agreement with XRD.


Sign in / Sign up

Export Citation Format

Share Document