scholarly journals Universal Dynamics of Magnetic Monopoles in Two-Dimensional Kagomé Ice

2021 ◽  
Vol 90 (12) ◽  
Author(s):  
Hiroshi Takatsu ◽  
Kazuki Goto ◽  
Taku J. Sato ◽  
Jeffrey W. Lynn ◽  
Kazuyuki Matsubayashi ◽  
...  
1992 ◽  
Vol 07 (19) ◽  
pp. 4477-4486 ◽  
Author(s):  
MARCO A.C. KNEIPP

We discuss the generalization of Abelian Chern-Simons theories when θ-angles and magnetic monopoles are included. We map these three dimensional theories into sectors of two-dimensional conformal field theories. The introduction of θ-angles allows us to establish in a consistent fashion a connection between Abelian Chern-Simons and 2-d free scalar field compactified on a noneven integral lattice. The Abelian Chern-Simons with magnetic monopoles is related to a conformal field theory in which the sum of the charges of the chiral vertex operators inside a correlator is different from zero.


Author(s):  
R. V. Hügli ◽  
G. Duff ◽  
B. O'Conchuir ◽  
E. Mengotti ◽  
A. Fraile Rodríguez ◽  
...  

Artificial spin-ice systems consisting of nanolithographic arrays of isolated nanomagnets are model systems for the study of frustration-induced phenomena. We have recently demonstrated that monopoles and Dirac strings can be directly observed via synchrotron-based photoemission electron microscopy, where the magnetic state of individual nanoislands can be imaged in real space. These experimental results of Dirac string formation are in excellent agreement with Monte Carlo simulations of the hysteresis of an array of dipoles situated on a kagome lattice with randomized switching fields. This formation of one-dimensional avalanches in a two-dimensional system is in sharp contrast to disordered thin films, where avalanches associated with magnetization reversal are two-dimensional. The self-organized restriction of avalanches to one dimension provides an example of dimensional reduction due to frustration. We give simple explanations for the origin of this dimensional reduction and discuss the disorder dependence of these avalanches. We conclude with the explicit demonstration of how these avalanches can be controlled via locally modified anisotropies. Such a controlled start and stop of avalanches will have potential applications in data storage and information processing.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xue-Yang Song ◽  
Chong Wang ◽  
Ashvin Vishwanath ◽  
Yin-Chen He

Abstract Quantum magnets provide the simplest example of strongly interacting quantum matter, yet they continue to resist a comprehensive understanding above one spatial dimension. We explore a promising framework in two dimensions, the Dirac spin liquid (DSL) — quantum electrodynamics (QED3) with 4 Dirac fermions coupled to photons. Importantly, its excitations include magnetic monopoles that drive confinement. We address previously open key questions — the symmetry actions on monopoles on square, honeycomb, triangular and kagome lattices. The stability of the DSL is enhanced on triangular and kagome lattices compared to bipartite (square and honeycomb) lattices. We obtain the universal signatures of the DSL on triangular and kagome lattices, including those of monopole excitations, as a guide to numerics and experiments on existing materials. Even when unstable, the DSL helps unify and organize the plethora of ordered phases in correlated two-dimensional materials.


2020 ◽  
Vol 2 (3) ◽  
pp. 388-399
Author(s):  
Carlo Trugenberger ◽  
M. Cristina Diamantini ◽  
Nicola Poccia ◽  
Flavio S. Nogueira ◽  
Valerii M. Vinokur

Electric-magnetic duality or S-duality, extending the symmetry of Maxwell’s equations by including the symmetry between Noether electric charges and topological magnetic monopoles, is one of the most fundamental concepts of modern physics. In two-dimensional systems harboring Cooper pairs, S-duality manifests in the emergence of superinsulation, a state dual to superconductivity, which exhibits an infinite resistance at finite temperatures. The mechanism behind this infinite resistance is the linear charge confinement by a magnetic monopole plasma. This plasma constricts electric field lines connecting the charge–anti-charge pairs into electric strings, in analogy to quarks within hadrons. However, the origin of the monopole plasma remains an open question. Here, we consider a two-dimensional Josephson junction array (JJA) and reveal that the magnetic monopole plasma arises as quantum instantons, thus establishing the underlying mechanism of superinsulation as two-dimensional quantum tunneling events. We calculate the string tension and the dimension of an electric pion determining the minimal size of a system capable of hosting superinsulation. Our findings pave the way for study of fundamental S-duality in desktop experiments on JJA and superconducting films.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Sign in / Sign up

Export Citation Format

Share Document