Effect of process parameters on fidelity of printed line width in high resolution roll-to-roll gravure printing

2014 ◽  
Vol 53 (5S3) ◽  
pp. 05HC04 ◽  
Author(s):  
Ho Anh Duc Nguyen ◽  
Kee-Hyun Shin ◽  
Dongjin Lee
2013 ◽  
Vol 23 (9) ◽  
pp. 095010 ◽  
Author(s):  
Ho Anh Duc Nguyen ◽  
Jongsu Lee ◽  
Chung Hwan Kim ◽  
Kee-Hyun Shin ◽  
Dongjin Lee

2021 ◽  
Author(s):  
Christin Gellrich ◽  
Stefanie Lochmann ◽  
Thomas Otto ◽  
Julia Grothe ◽  
Stefan Kaskel

A highly energetic carbon precursor suitable for soft lithographic processing based on acetylene dicarboxylic acid is presented. High-resolution micro-supercapacitors with line width down to 500 nm are produced using the...


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2012 ◽  
Vol 23 (48) ◽  
pp. 485310 ◽  
Author(s):  
Jarrett J Dumond ◽  
Kambiz Ansari Mahabadi ◽  
Yew Sok Yee ◽  
Christina Tan ◽  
Jerry Ying Hsi Fuh ◽  
...  

Author(s):  
Mohan Yu ◽  
Ye Jien Yeow ◽  
Logan Lawrence ◽  
Pier Paolo Claudio ◽  
James B. Day ◽  
...  

Abstract Pneumatic micro-extrusion (PME) is a direct-write additive manufacturing process, which has emerged as a robust, high-resolution method for the fabrication of a broad spectrum of biological tissues and organs. In the PME process, a high-pressure flow is injected into a cartridge, which contains a bioink material, resulting in pressure-driven material deposition on a free surface via a converging conical micro-capillary. In this study, PCL powder was loaded into the cartridge, maintained at 120 °C. The flow pressure was set to 550 kPa. Laminar molten PCL flow was deposited on a glass surface (steadily and uniformly kept at 45 °C), using a 200 μm nozzle. A porous, cylindrical scaffold was designed (honeycomb-filled), having a diameter and height of 10 mm and 3 mm, respectively. To investigate the effects of the design and process parameters, a series of experiments were designed and conducted where print speed was varied at four levels in the range of 0.30–0.45 mm/s with 0.05 mm/s increments. In addition, similarly, layer height and layer width were changed at four levels in the range of 125–200 μm with 25μm increments. Finally, infill density was set at four levels in the range of 0.20–0.35 with 5% increments. As a result, 16 experimental runs were characterized, each replicated four times. Of each of the PME-fabricated samples, an image was acquired (both horizontally and vertically) using a high-resolution CCD camera. Illumination was provided by an LED ring light (being of a brightness in the range of 30,000–40,000 Lux as well as a color temperature of 6000 K). Subsequently, the acquired images were analyzed using in-house digital image processing algorithms, forwarded with the aim to characterize both the diameter and the height of the fabricated bone scaffolds. The veracity of the image-based measurements was corroborated, using offline caliper measurements. Furthermore, the compression properties of the fabricated bone scaffolds were measured using a compression testing machine; the samples were subjected to a compression load, applied with a velocity of 0.08 mm/s. Overall, the results of this study pave the way for future investigation of PME-deposited PCL scaffolds with optimal mechanical and morphological properties for incorporation of hBMSCs toward the treatment of osseous fractures and defects.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1132
Author(s):  
Xiaoqiang Li ◽  
Guangming Zhang ◽  
Wenhai Li ◽  
Zun Yu ◽  
Kun Yang ◽  
...  

Existing 3D printing techniques are still facing the challenge of low resolution for fabricating polymer matrix composites, inhibiting the wide engineering applications for the biomedical engineering (biomimetic scaffolds), micro fuel cells, and micro-electronics. In order to achieve high resolution fabrication of polylactic acid (PLA)/multi-walled carbon nanotube (MWCNT) composites, this paper presents an electric-field-driven (EFD) fusion jetting 3D printing method by combining the mixing effect and material feeding of the micro-screw and the necking effect of Taylor cone by the EFD. The effects of main process parameters (the carbon loading, the voltage, the screw speed, and the printing speed) on the line width and the printing quality were studied and optimized. To demonstrate the printing capability of this proposed method, meshes with line width of 30 µm to 100 μm and 1 wt.% to 5 wt.% MWCNT for the application of conductive biomimetic scaffold and the anisotropic flexible meshes were prepared. The electrical properties were investigated to present the frequency dependence of the alternating current conductivity and the dielectric loss (tanδ), and the microstructures of printed structures demonstrated the uniformly dispersed MWCNT in PLA matrix. Therefore, it provides a new solution to fabricate micro-scale structures of composite materials, especially the 3D conductive biomimetic scaffolds.


Sign in / Sign up

Export Citation Format

Share Document