scholarly journals X-ray topographical analysis of 4H-SiC epitaxial layers using a forward-transmitted beam under a multiple-beam diffraction condition

2018 ◽  
Vol 57 (9) ◽  
pp. 090314 ◽  
Author(s):  
Isaho Kamata ◽  
Yoshiyuki Tsusaka ◽  
Ryohei Tanuma ◽  
Junji Matsui
2020 ◽  
Vol 117 (9) ◽  
pp. 092102 ◽  
Author(s):  
Yongzhao Yao ◽  
Yoshiyuki Tsusaka ◽  
Yukari Ishikawa ◽  
Yoshihiro Sugawara ◽  
Yu Fujita ◽  
...  

2016 ◽  
Vol 87 (2) ◽  
pp. 023701 ◽  
Author(s):  
Y. Tsusaka ◽  
S. Takeda ◽  
H. Takano ◽  
K. Yokoyama ◽  
Y. Kagoshima ◽  
...  

2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Zheng Tang ◽  
Lirong Zheng ◽  
Shengqi Chu ◽  
Pengfei An ◽  
Xianrong Huang ◽  
...  

On the basis of rigorous dynamical-theory calculations, a complete X-ray polarization-switch effect of silicon crystals at the exact multiple-beam diffraction condition is demonstrated. The underlying physical mechanism of this unique phenomenon can be revealed using a simple multiple-wave propagation and interference model. The constructive and destructive interference of the multiple detoured-diffraction beams along the direction of the primary diffracted beam directly leads to the complete polarization switch. This phenomenon can be realized using both synchrotron and laboratory X-ray sources at many discrete wavelengths, and used to design a novel crystal-based polarizer to achieve a 90° polarization rotation.


1992 ◽  
Vol 63 (1) ◽  
pp. 911-913 ◽  
Author(s):  
M. Hagelstein ◽  
S. Cunis ◽  
R. Frahm ◽  
P. Rabe

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1561
Author(s):  
Nataliya Klimova ◽  
Irina Snigireva ◽  
Anatoly Snigirev ◽  
Oleksandr Yefanov

The highest-quality X-ray optics can be made of single-crystal materials such as silicon, germanium, or, even better, diamond. Unfortunately, such X-ray optics have one drawback: diffraction losses or the “glitch effect”. This effect manifests itself as follows: at some energies of X-rays, the intensity of the transmitted beam drops due to the fact that some crystalline planes have satisfied the diffraction condition. Diffraction losses are usually observed in spectroscopic experiments when the energy of the X-rays changes in a certain range. However, this effect might also influence any experiment using X-rays, especially at higher energies. In this paper, we propose a method to overcome the glitch problem in transmissive optics. This is achieved using small rotations of the optical element. We describe the algorithm for “glitch-free” measurements in detail and the theory behind it.


2016 ◽  
Vol 49 (5) ◽  
pp. 1653-1658 ◽  
Author(s):  
Y.-H. Wu ◽  
Y.-Y. Chang ◽  
Y.-W. Tsai ◽  
S.-L. Chang

Detailed considerations of how to construct inclined-incidence hard X-ray resonators are presented. Owing to the symmetry of the crystals used, the Bragg back reflection usually employed in normal-incidence two- and multi-plate resonators to reflect the X-ray beam is often accompanied by unavoidable multiple-beam diffraction, and thus the reflectivity and cavity finesse are quite low. In contrast, crystal-based Fabry–Perot (FP) resonators at inclined incidence utilize multiple-beam diffraction to excite the back reflection inside the resonator to generate FP resonance with high efficiency, while avoiding the incident beam suffering from crystal absorption. The useful characteristics of inclined-incidence resonators are derived from numerical calculations based on the inclined-incidence diffraction geometry and the dynamical theory. Experimental results with Laue inclined incidence are in accordance with the simulation. The sub-millielectronvolt energy resolution and ultra-high efficiency of the transmission spectrum of the proposed resonators are also described.


2015 ◽  
Vol 71 (4) ◽  
pp. 460-466 ◽  
Author(s):  
Po-Yu Liao ◽  
Wen-Chung Liu ◽  
Chih-Hao Cheng ◽  
Yi-Hua Chiu ◽  
Ying-Yu Kung ◽  
...  

This paper reports temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals, involving forbidden (002) and weak (222) reflections. Phase determination based on multiple-beam diffraction is employed to estimate phase shifts from (002)-based \{(002)(375)(37\overline{3})\} four-beam cases and (222)-based \{ (222)(\overline{5}3\overline{3})\} three-beam cases in the vicinity of the GeKedge for temperatures from 20 K up to 300 K. The forbidden/weak reflections enhance the sensitivity of measuring phases at resonance. At room temperature, the resonance triplet phases reach a maximum of 8° for the four-beam cases and −19° for the three-beam cases. It is found that the peak intensities and triplet phases obtained from the (002) four-beam diffraction are related to thermal motion induced anisotropy and anomalous dispersion, while the (222) three-beam diffraction depends on the aspherical covalent electron distribution and anomalous dispersion. However, the electron–phonon interaction usually affects the forbidden reflections with increasing temperatures and seems to have less effect on the resonance triplet phase shifts measured from the (002) four-beam diffraction. The resonance triplet phase shifts of the (222) three-beam diffractionversustemperature are also small.


2014 ◽  
Vol 47 (5) ◽  
pp. 1716-1721 ◽  
Author(s):  
Xian-Rong Huang ◽  
Quanjie Jia ◽  
Michael Wieczorek ◽  
Lahsen Assoufid

The interesting phenomenon of continuous multiple-beam diffraction (MBD) occurring within special crystallographic planes of cubic structures is illustrated for any Bragg angles of the primary reflection. On the one hand, this effect must be avoided in crystal-based X-ray optics or general crystal diffraction experiments that are designed to utilize two-beam diffraction mechanisms, since the MBD process can significantly reduce the diffraction efficiency and the monochromatization quality. On the other hand, the continuous MBD mechanism may have unique practical applications, with the advantage that it can be activated at arbitrary X-ray wavelengths by simply adjusting the azimuthal angle of the primary reflection. A simple mathematical procedure for determining the continuous MBD planes of any primary reflections is developed for optimization of X-ray monochromator designs and for general X-ray characterization of (pseudo)cubic structure crystals using MBD.


2014 ◽  
Vol 105 (18) ◽  
pp. 181903 ◽  
Author(s):  
Xian-Rong Huang ◽  
Ru-Wen Peng ◽  
Thomas Gog ◽  
D. P. Siddons ◽  
Lahsen Assoufid

2019 ◽  
Vol 52 (6) ◽  
pp. 1321-1328
Author(s):  
Marcelo Goncalves Hönnicke ◽  
Cesar Cusatis ◽  
Raymond Conley ◽  
Edson Massayuki Kakuno ◽  
Elina Kasman ◽  
...  

X-ray beams at energies tuned slightly below that of exact backscattering (extreme conditions, where X-ray back-diffraction is almost extinguished – called residual XBD) are better focused if the experiment is carried out at lower energies in order to avoid multiple-beam diffraction effects. Following previous work by the authors [Hönnicke, Conley, Cusatis, Kakuno, Zhou, Bouet, Marques & Vicentin (2014). J. Appl. Cryst. 47, 1658–1665], herein efforts are directed towards characterizing the residual XBD beam of an ultra-thin Si 220 crystal (UTSiXTAL) at ∼3.2 keV. To achieve the residual XBD condition the UTSiXTAL was cooled from 310 to 273 K. The results indicate that under this extreme condition the energy resolution can be further improved. Issues with the energy resolution measurements due to incoming beam divergence and the ultra-thin crystal flatness are discussed.


Sign in / Sign up

Export Citation Format

Share Document