Surface electromagnetic waves in linear and nonlinear infrared spectral measurements using free electron laser

2002 ◽  
Vol 41 (S1) ◽  
pp. 96
Author(s):  
V.A. Yakovlev ◽  
E.V. Alieva
2016 ◽  
Vol 11 (3) ◽  
pp. 72-82
Author(s):  
Vasily Gerasimov ◽  
Elvira Grigorieva ◽  
Boris Knyazev ◽  
Yuliya Choporova

Attenuated total reflection (ATR) spectroscopy is widely used in the visible and infrared spectral ranges. Progress in the development of laboratory scale monochromatic sources of terahertz radiation, such as quantum cascade lasers, suggests that in the near future this kind of spectrometers will be widely spread in the terahertz range. For this reason, the development of ATR based methods and devices is highly relevant. In this paper, we discuss the features of the use of ATR spectroscopy in the terahertz range, and describe some of the optical systems, designed for experiments at the Novosibirsk free electron laser (NovoFEL). We show that in the terahertz range the ATR spectroscopy has a number of significant advantages over the absorption spectroscopy. As an example, we are discussing the possibility of using terahertz polarimetry to develop a method for early diagnosis of cancer via the detection of left-handed to right-handed polysaccharide enantiomers ratio. Spectra of selected polysaccharides were recorded with a standard Fourier spectrometer using developed by us an ATR unit. The possibility of studying the polarization characteristics of polysaccharides in aqueous solutions using spectrally selective polarimeter with the NovoFEL as a tunable radiation source was demonstrated.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Christian David ◽  
Gediminas Seniutinas ◽  
Mikako Makita ◽  
Benedikt Rösner ◽  
Jens Rehanek ◽  
...  

The performance and parameters of the online photon single-shot spectrometer (PSSS) at the Aramis beamline of the SwissFEL free-electron laser are presented. The device operates between the photon energies 4 and 13 keV and uses diamond transmission gratings and bent Si crystals for spectral measurements on the first diffraction order of the beam. The device has an energy window of 0.7% of the median photon energy of the free-electron laser pulses and a spectral resolution (full width at half-maximum) ΔE/E on the order of 10−5. The device was characterized by comparing its performance with reference data from synchrotron sources, and a parametric study investigated other effects that could affect the reliability of the spectral information.


2001 ◽  
Vol 66 (5) ◽  
pp. 301-313 ◽  
Author(s):  
J. E. WILLETT ◽  
B. BOLON ◽  
U.-H. HWANG ◽  
Y. AKTAS

A new one-dimensional analysis of the collective interaction in a free-electron laser with combined helical wiggler and uniform axial magnetic fields is presented. Maxwell's curl relations and the cold-fluid equations are employed, with the appropriate form of solution for right and left circularly polarized electromagnetic waves and space-charge waves. A set of three linear homogeneous algebraic equations for the electric field amplitudes of the three propagating waves is derived. This set may be employed to obtain the general dispersion relation in the form of a tenth-degree polynomial equation. With the left circular wave assumed to be nonresonant, the dispersion relation reduces to a seventh-degree polynomial equation corresponding to four space-charge modes and three right circular modes. The results of a numerical study of the spatial growth rate and radiation frequency are presented.


2008 ◽  
Vol 74 (2) ◽  
pp. 187-196 ◽  
Author(s):  
H. MEHDIAN ◽  
S. JAFARI

AbstractThe operation of a free-electron laser (FEL) with electromagnetic wave wiggler in the presence of an ion-channel guiding as well as an axial guide magnetic field is considered and compared. Theoretical studies of electron trajectories and dispersion relations in a combined ion electrostatic field as well as large-amplitude backward-propagating electromagnetic waves are analyzed. The large-amplitude wave acts like a magnetostatic wiggler in a FEL. The results of a numerical study are presented and discussed. It is shown that in the wiggler pumped ion-channel free-electron laser (WPIC-FEL), electron orbits and dispersion relation are time-dependent, and over time, electron orbits while oscillating bear a periodic motion.


1990 ◽  
Vol 65 (18) ◽  
pp. 2251-2254 ◽  
Author(s):  
B. G. Danly ◽  
S. G. Evangelides ◽  
T. S. Chu ◽  
R. J Temkin ◽  
G. Ramian ◽  
...  

1990 ◽  
Vol 44 (1) ◽  
pp. 33-45 ◽  
Author(s):  
F. B. Rizzato

The filamentation of electromagnetic waves in a free-electron laser with deeply trapped electrons is analysed. This instability is the result of particle bunching along transverse directions (with respect to the fast wave vector), as opposed to the untrapped-electron case, where it is a result of longitudinal bunching. Two cases are considered: (i) the non-resonant or reactive one, with purely imaginary growth rates; and (ii) the resonant one, with large (small) values of the real (imaginary) part of the perturbing frequency. In particular, we find that the reactive instability occurs only when the wiggler amplitude is unusually large. On the other hand, we show that the resonant process (with frequencies close to the synchrotron frequency) may be relevant for conventional free-electron lasers and that the growth rate for quasi-trans verse perturbations may be larger than that corresponding to longitudinal perturbations. Owing to the inhomogeneity and anisotropy of our system, low-frequency magnetic fields are generated. These fields, as well as the transverse electric fields, are analysed, and their role in the low-frequency dynamics is clarified.


Sign in / Sign up

Export Citation Format

Share Document