Effects of Polytypism on the Thermoelectric Properties of Si Nanowires: a Combination of Density Functional Theory and Boltzmann Transport Equation Calculations

2015 ◽  
Author(s):  
T. Komoda ◽  
T. Akiyama ◽  
K. Nakamura ◽  
T. Ito
2018 ◽  
Vol 20 (45) ◽  
pp. 28575-28582 ◽  
Author(s):  
Bhagwati Prasad Bahuguna ◽  
L. K. Saini ◽  
Rajesh O. Sharma ◽  
Brajesh Tiwari

We have investigated the structural, electronic and thermoelectric properties of GaS, GaSe and GaTe monolayers based on the first-principles approach by using density functional theory and the semi-classical Boltzmann transport equation.


2020 ◽  
Vol 22 (40) ◽  
pp. 23246-23257
Author(s):  
Mohammad Ali Mohebpour ◽  
Sahar Izadi Vishkayi ◽  
Meysam Bagheri Tagani

We performed a density functional theory calculation combined with the semiclassical Boltzmann transport equation to investigate the thermoelectric properties of the stabilized Sn2Bi monolayer.


Author(s):  
Zhao-Liang Wang ◽  
Guofu Chen ◽  
Xiaoliang Zhang ◽  
Dawei Tang

Through the first-principles density functional theory and the phonon Boltzmann transport equation, we investigated the phonon transport characteristics inside 1T-TiSe2.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


2018 ◽  
Vol 20 (3) ◽  
pp. 1809-1816 ◽  
Author(s):  
Robert L. González-Romero ◽  
Alex Antonelli ◽  
Anderson S. Chaves ◽  
Juan J. Meléndez

An ultralow lattice thermal conductivity of 0.14 W m−1 K−1 along the b⃑ axis of As2Se3 single crystals was obtained at 300 K by first-principles calculations involving density functional theory and the resolution of the Boltzmann transport equation.


Author(s):  
Muhammad Zamir Mohyedin ◽  
Mohamad Fariz Mohamad Taib ◽  
Afiq Radzwan ◽  
M. Mustaffa ◽  
Amiruddin Shaari ◽  
...  

Abstract Good thermoelectric performance is being sought to face major problems related to energy, especially in the concern of the usage of energy on environmental impact. In this work, we investigate the underlying mechanism to enhance the thermoelectric performance of bismuth selenide (Bi2Se3) by employing density functional theory (DFT) followed by the Boltzmann transport equation under relaxation time approximation. The structural, electronic, and thermoelectric properties were calculated and analyzed. From the analysis of combined results of thermoelectric properties and electronic properties as the function of the Fermi level, we found that the power factor of Bi2Se3 is improved by increasing electrical conductivity that contributed by the large density of states and light effective mass of charge carriers. The figure of merit, on the other hand, is enhanced by increasing Seebeck coefficient that contributed by heavy effective mass and decreasing thermal conductivity that contributed by low density of states. We also found that both power factor and figure of merit can be improved through n-type doping at 300 K and p-type doping at higher temperature (400 K and 500 K).


Sign in / Sign up

Export Citation Format

Share Document