scholarly journals Characteristics of ground reaction force and lower limb kinematics during running on self-driven treadmill equipped with curve-shaped bed in sagittal plane

2015 ◽  
Vol 64 (3) ◽  
pp. 333-344 ◽  
Author(s):  
Yu Kashiwagi ◽  
Tomoya Hirano ◽  
Michio Yamagishi ◽  
Noriko Hakamada ◽  
Ken-Ichi Kaneko ◽  
...  
2005 ◽  
Vol 23 (10) ◽  
pp. 1045-1055 ◽  
Author(s):  
Eleftherios Kellis ◽  
Fotini Arambatzi ◽  
Christos Papadopoulos

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6829
Author(s):  
Luke Wicent F. Sy ◽  
Nigel H. Lovell ◽  
Stephen J. Redmond

Tracking the kinematics of human movement usually requires the use of equipment that constrains the user within a room (e.g., optical motion capture systems), or requires the use of a conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached to each body segment). This paper presents a novel Lie group constrained extended Kalman filter to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a reduced sensor count configuration. The algorithm iterates through the prediction (kinematic equations), measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity update for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6±2.6∘ and 6.6±2.7∘, respectively, while the correlation coefficients were 0.95±0.03 and 0.87±0.16, respectively. Furthermore, experiments using simulated inter-IMU distance measurements show that performance improved substantially for dynamic movements, even at large noise levels (σ=0.2 m). However, further validation is recommended with actual distance measurement sensors, such as ultra-wideband ranging sensors.


2020 ◽  
Vol 10 (24) ◽  
pp. 8818
Author(s):  
Aurélien Patoz ◽  
Thibault Lussiana ◽  
Adrien Thouvenot ◽  
Laurent Mourot ◽  
Cyrille Gindre

The aim was to identify the differences in lower limb kinematics used by high (DFhigh) and low (DFlow) duty factor (DF) runners, particularly their sagittal plane (hip, knee, and ankle) joint angles and pelvis and foot segment angles during stance. Fifty-nine runners were divided in two DF groups based on their mean DF measured across a range of speeds. Temporal characteristics and whole-body three-dimensional kinematics of the running step were recorded from treadmill runs at 8, 10, 12, 14, 16, and 18 km/h. Across speeds, DFhigh runners, which limit vertical displacement of the COM and promote forward propulsion, exhibited more lower limb flexion than DFlow during the ground contact time and were rearfoot strikers. On the contrary, DFlow runners used a more extended lower limb than DFhigh due to a stiffer leg and were midfoot and forefoot strikers. Therefore, two different lower limb kinematic mechanisms are involved in running and the one of an individual is reflected by the DF.


2017 ◽  
Vol 13 (4) ◽  
pp. 251-258 ◽  
Author(s):  
R. Graydon ◽  
D. Fewtrell ◽  
S. Atkins ◽  
J. Sinclair

Football (soccer) players have a high risk of injuring the lower extremities. To reduce the risk of ankle inversion injuries ankle braces can be worn. To reduce the risk of ankle contusion injuries ankle protectors can be utilised. However, athletes can only wear one of these devices at a time. The effects of ankle braces on stance limb kinematics has been extensively researched, however ankle protectors have had little attention. Therefore, the current study aimed to investigate the effects of ankle protectors on lower extremity kinematics during the stance phase of jogging and compare them with braced and uncovered ankles. Twelve male participants ran at 3.4 m/s in three test conditions; ankle braces (BRACE), ankle protectors (PROTECTOR) and with uncovered ankles (WITHOUT). Stance phase kinematics were collected using an eight-camera motion capture system. Kinematic data between conditions were analysed using one-way repeated measures ANOVA. The results showed that BRACE (absolute range of motion (ROM) = 10.72° and relative ROM = 10.26°) significantly (P<0.05) restricted the ankle in the coronal plane when compared to PROTECTOR (absolute ROM=13.44° and relative ROM =12.82°) and WITHOUT (absolute ROM=13.64° and relative ROM=13.10°). It was also found that both BRACE (peak dorsiflexion=17.02° and absolute ROM=38.34°) and PROTECTOR (peak dorsiflexion =18.46° and absolute ROM =40.15°) significantly (P<0.05) reduced sagittal plane motion when compared to WITHOUT (peak dorsiflexion =19.20° and absolute ROM =42.66°). Ankle protectors’ effects on lower limb kinematics closely resemble that of an unbraced ankle. Therefore, ankle protectors should only be used as a means to reduce risk of ankle contusion injuries and not implemented as a method to reduce the risk of ankle inversion injuries. Furthermore, the reductions found in sagittal plane motion of the ankle could possibly increase the bodies energy demand needed for locomotion when ankle protectors are utilised.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 944
Author(s):  
Y Bharat Satya Kumar ◽  
Y Kalyan Chakravarthy ◽  
Ratna Prasad Paladagu ◽  
R Venkatesh ◽  
A Srinath

Force Plate is a measuring instrument which is used to calibrate the ground reaction force in gait cycle analysis of a subject (human or animal). Force plates are used to examine the lower limb kinematics for the applications of prosthetics, sports etc. In this study, a prototype of force plate is developed indigenously in an economical manner. It comprises of two metallic frames with a load cell (force transducer) mounted between them to produce an electrical signal as output, that is proportional to the amount of force applied on the surface of force plate. This prototype has a maximum load capacity of 3000N. The design of the force plate system along with the ground reaction force analysis and results are discussed below.  


2015 ◽  
Vol 49 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Cristina Cadenas-Sanchez ◽  
Raúl Arellano ◽  
Jos Vanrenterghem ◽  
Gracia López-Contreras

Abstract The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg) were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05). At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs.


Author(s):  
Suo Di Xu ◽  
Zhi Qiang Liang ◽  
Yu Wei Liu ◽  
Gusztáv Fekete

The purpose of this study was to evaluate the biomechanical performances, running stability of habitually barefoot (BR) and shod runners (SR) during barefoot jogging and running. Ten healthy male subjects, 5 habitually shod runners and 5 habitually barefoot runners, from two different ethnics participated in this study. Subjects performed jogging (2m/s) and running (4m/s) along a 10-m runway. Three-dimensional lower-limb kinematics, ground reaction force, center of pressure (COP) and contact time (CT), were collected during testing. During jogging and running, all participants adopted rear-foot strike pattern, SR had larger VALR. SR showed significantly larger lower-limb range of motion (ROM) in sagittal plane, significantly larger hip abduction and opposite knee ROM in frontal plane, as well as significantly larger ankle internal rotation in horizontal plane. All participants’ CT showed decreased trend with running speed up; and SR was significantly longer than BR; BR and SR in COP showed different trajectories, especially forefoot and rearfoot areas. Habitually barefoot and shod runner from different ethnics still exist significant differences in lower-extremity ROM; and different foot morphological of participants is an important influential factor for these variations.


Author(s):  
Luke Wicent F. Sy ◽  
Nigel H. Lovell ◽  
Stephen J. Redmond

Tracking the kinematics of human movement usually requires the use of equipment that constrains the user within a room (e.g., optical motion capture systems), or requires the use of a conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached to each body segment). This paper presents a novel Lie group constrained extended Kalman filter to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a reduced sensor count configuration. The algorithm iterates through the prediction (kinematic equations), measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity update for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6&plusmn;2.6∘ and 6.6&plusmn;2.7∘, respectively, while the correlation coefficients were 0.95&plusmn;0.03 and 0.87&plusmn;0.16, respectively. Furthermore, experiments using simulated inter-IMU distance measurements show that performance improved substantially for dynamic movements, even at large noise levels (&sigma;=0.2 m). However, further validation is recommended with actual distance measurement sensors, such as ultra-wideband ranging sensors.


Sign in / Sign up

Export Citation Format

Share Document