scholarly journals Comparative analysis between natural gas/diesel (dual fuel) and pure diesel on the marine diesel engine

2015 ◽  
Vol 3 (4) ◽  
Author(s):  
Hongliang Yu ◽  
Shulin Duan ◽  
Peiting Sun
2014 ◽  
Vol 1010-1012 ◽  
pp. 1912-1917
Author(s):  
Xiang Dong Cui ◽  
Zhi De Zhang ◽  
Bin Li

With concern about the influence from hazardous emissions of marine diesel engine using fuel oil as fuel and international convention on marine diesel engine emission regulations, the new technology developments of foreign marine dual fuel diesel engines and their latest progresses are introduced, and the development trend of dual fuel diesel engine applications on ship demonstrated. The using problems of the marine dual fuel diesel engine in China are researched with an analysis and prospect of action and reaction in China.


Author(s):  
Yoshifuru Nitta ◽  
Dong-Hoon Yoo ◽  
Sumito Nishio ◽  
Yasuhisa Ichikawa ◽  
Koichi Hirata ◽  
...  

The need for reductions of nitrogen oxides (NOx), sulfur oxides (SOx), and carbon dioxide (CO2) emissions has been acknowledged on the global level. However, it is difficult to meet the strengthened emissions regulations by using the conventional marine diesel engines. Therefore, lean burn gas engines have been recently attracting attention in the maritime industry. Because they use natural gas as fuel and can simultaneously reduce both NOx and CO2 emissions. On the other hand, since methane is the main component of natural gas, the slipped methane, which is the unburned methane emitted from the lean burn gas engines, might have a potential impact on global warming. The authors have proposed a combined exhaust gas recirculation (C-EGR) system to reduce the slipped methane from the gas engines and NOx from marine diesel engines by providing the exhaust gas from lean burn gas engine to the intake manifold of the marine diesel engine using a blower. Since the exhaust gas from the gas engine includes slipped methane, this system could reduce both the NOx from the marine diesel engine and the slipped methane from the lean burn gas engine simultaneously. This paper introduces the details of the proposed C-EGR system and presents the experimental results of emissions characteristics on the C-EGR system. As a result, it was confirmed that the C-EGR system attained more than 75% reduction of the slipped methane in the intake gas. Additionally, the NOx emission from the diesel engine decreased with the effect of the exhaust gas recirculation (EGR) system.


Author(s):  
Yoshifuru Nitta ◽  
Dong-Hoon Yoo ◽  
Sumito Nishio ◽  
Yasuhisa Ichikawa ◽  
Koichi Hirata ◽  
...  

Reductions of Nitrogen oxides (NOx), sulphur oxides (SOx) and carbon dioxide (CO2) emissions have been acknowledged on the global level. The International Maritime Organization (IMO) has developed some mandatory or non-mandatory instruments such as codes, amendments, recommendations or guidelines to strengthen the emissions regulations on ships engaged in international voyage. However, it is difficult to meet the strengthened emissions regulations on the conventional marine diesel engines. Lean burn gas engines have been thus recently attracting attention in the maritime industry. The lean burn gas engines use natural gas as fuel and can simultaneously reduce both NOx and CO2 emissions. On the other hand, since methane is the main component of natural gas, the slipped methane which is the unburned methane emitted from the lean burn gas engines might have a potential impact on global warming. The authors investigated on a ship installed conventional marine diesel engines and lean burn gas engines, and have proposed a C-EGR (combined exhaust gas recirculation) system to reduce the slipped methane from the gas engines and NOx from marine diesel engines. This system consists of a marine diesel engine and a lean burn gas engine, and the exhaust gas emitted from the lean burn gas engine is provided to the intake manifold of the marine diesel engine by a blower installed between both engines. Since exhaust gas from the gas engine including slipped methane, this system could reduce both the NOx from the marine diesel engine and the slipped methane from the lean burn gas engine simultaneously. This paper introduces the details of the proposed C-EGR system, and presents the experimental results of emissions and engine performance characteristics on the C-EGR system. In the experiment, the diesel engine was operated at three load conditions of 25, 50 and 75% along with the propeller load curve. In order to keep the slipped methane concentration constant, the gas engine was operated at a constant load condition of 25%. The intake exhaust gas quantity which is supplied to the diesel engine was adjusted by the blower speed. As a result, it was confirmed that the C-EGR system attained more than 75% reduction of the slipped methane in the intake gas. In addition, the NOx emission from the diesel engine decreased with the effect of the EGR system. Also the fuel consumption of the diesel engine did not increase, because of the methane combustion in the intake gas.


2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document