scholarly journals Getting new algorithmic results by extending distance-hereditary graphs via split composition

2021 ◽  
Vol 7 ◽  
pp. e627
Author(s):  
Serafino Cicerone ◽  
Gabriele Di Stefano

In this paper, we consider the graph class denoted as Gen(∗;P3,C3,C5). It contains all graphs that can be generated by the split composition operation using path P3, cycle C3, and any cycle C5 as components. This graph class extends the well-known class of distance-hereditary graphs, which corresponds, according to the adopted generative notation, to Gen(∗;P3,C3). We also use the concept of stretch number for providing a relationship between Gen(∗;P3,C3) and the hierarchy formed by the graph classes DH(k), with k ≥1, where DH(1) also coincides with the class of distance-hereditary graphs. For the addressed graph class, we prove there exist efficient algorithms for several basic combinatorial problems, like recognition, stretch number, stability number, clique number, domination number, chromatic number, and graph isomorphism. We also prove that graphs in the new class have bounded clique-width.

Author(s):  
Mohammad HABIBI ◽  
Ece YETKİN ÇELİKEL ◽  
Ci̇hat ABDİOĞLU

Let [Formula: see text] be a ring (not necessarily commutative) with identity. The clean graph [Formula: see text] of a ring [Formula: see text] is a graph with vertices in form [Formula: see text], where [Formula: see text] is an idempotent and [Formula: see text] is a unit of [Formula: see text]; and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text]. In this paper, we focus on [Formula: see text], the subgraph of [Formula: see text] induced by the set [Formula: see text] is a nonzero idempotent element of [Formula: see text]. It is observed that [Formula: see text] has a crucial role in [Formula: see text]. The clique number, the chromatic number, the independence number and the domination number of the clean graph for some classes of rings are determined. Moreover, the connectedness and the diameter of [Formula: see text] are studied.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 611-619
Author(s):  
Sercan Topkaya ◽  
Sinan Cevik

In this paper, by establishing a new graph ?(G) over the semi-direct product of groups, we will first state and prove some graph-theoretical properties, namely, diameter, maximum and minimum degrees, girth, degree sequence, domination number, chromatic number, clique number of ?(G). In the final section we will show that ?(G) is actually a perfect graph.


1973 ◽  
Vol 25 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Alan Tucker

A graph G is called γ-perfect if ƛ (H) = γ(H) for every vertex-generated subgraph H of G. Here, ƛ(H) is the clique number of H (the size of the largest clique of H) and γ(H) is the chromatic number of H (the minimum number of independent sets of vertices that cover all vertices of H). A graph G is called α-perfect if α(H) = θ(H) for every vertex-generated subgraph H of G, where α (H) is the stability number of H (the size of the largest independent set of H) and θ(H) is the partition number of H (the minimum number of cliques that cover all vertices of H).


2017 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Kemal Toker

$\Gamma (SL_{X})$ is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over  $\Gamma (SL_{X})$ to the tensor product. The diameter, radius, girth, domination number, independence number, clique number, chromatic number and chromatic index of $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ has been established. Moreover, we have determined when $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ is a perfect graph.


Author(s):  
János Pach ◽  
Gábor Tardos ◽  
Géza Tóth

Abstract The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$ , $$d \ge 2$$ , is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$ , where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
V. Giakoumakis ◽  
F. Roussel ◽  
H. Thuillier

International audience We study the P_4-tidy graphs, a new class defined by Rusu [30] in order to illustrate the notion of P_4-domination in perfect graphs. This class strictly contains the P_4-extendible graphs and the P_4-lite graphs defined by Jamison & Olariu in [19] and [23] and we show that the P_4-tidy graphs and P_4-lite graphs are closely related. Note that the class of P_4-lite graphs is a class of brittle graphs strictly containing the P_4-sparse graphs defined by Hoang in [14]. McConnel & Spinrad [2] and independently Cournier & Habib [5] have shown that the modular decomposition tree of any graph is computable in linear time. For recognizing in linear time P_4-tidy graphs, we apply a method introduced by Giakoumakis in [9] and Giakoumakis & Fouquet in [6] using modular decomposition of graphs and we propose linear algorithms for optimization problems on such graphs, as clique number, stability number, chromatic number and scattering number. We show that the Hamiltonian Path Problem is linear for this class of graphs. Our study unifies and generalizes previous results of Jamison & Olariu ([18], [21], [22]), Hochstattler & Schindler[16], Jung [25] and Hochstattler & Tinhofer [15].


1999 ◽  
Vol 10 (01) ◽  
pp. 103-121 ◽  
Author(s):  
FLORIAN ROUSSEL ◽  
IRENA RUSU ◽  
HENRI THUILLIER

The study of graphs containing few P4's generated an important number of results related to perfection, recognition, optimization problems (see [12], [15], [8]). We define here a new, larger class of graphs and show that the indicated problems may be efficiently solved on this class too (thus generalizing some of the previous results). Namely, we give a linear time recognition algorithm for this class and we note that the optimization problems concerning the clique number, stability number, chromatic number and clique cover number are solvable in linear time.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nurten Urlu Özalan

In this paper, we first introduce a new graph Γ N over an extension N of semigroups and after that we study and characterize the spectral properties such as the diameter, girth, maximum and minimum degrees, domination number, chromatic number, clique number, degree sequence, irregularity index, and also perfectness for Γ N . Moreover, we state and prove some important known Zagreb indices on this new graph.


2010 ◽  
Vol 52 (3) ◽  
pp. 417-425 ◽  
Author(s):  
H. R. MAIMANI ◽  
M. R. POURNAKI ◽  
S. YASSEMI

AbstractA graph is called weakly perfect if its chromatic number equals its clique number. In this paper a new class of weakly perfect graphs arising from rings are presented and an explicit formula for the chromatic number of such graphs is given.


2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


Sign in / Sign up

Export Citation Format

Share Document