scholarly journals Who participates in computer science education studies? A literature review on K-12 subjects

2021 ◽  
Vol 7 ◽  
pp. e807
Author(s):  
Anna van der Meulen ◽  
Felienne Hermans ◽  
Efthimia Aivaloglou ◽  
Marlies Aldewereld ◽  
Bart Heemskerk ◽  
...  

Computer science education (CSEd) research within K-12 makes extensive use of empirical studies in which children participate. Insight in the demographics of these children is important for the purpose of understanding the representativeness of the populations included. This literature review studies the demographics of subjects included in K-12 CSEd studies. We have manually inspected the proceedings of three of the main international CSEd conferences: SIGCSE, ITiCSE and ICER, of five years (2014–2018), and selected all papers pertaining to K-12 CSEd experiments. This led to a sample of 134 papers describing 143 studies. We manually read these papers to determine the demographic information that was reported on, investigating the following categories: age/grade, gender, race/ethnic background, location, prior computer science experience, socio-economic status (SES), and disability. Our findings show that children from the United States, boys and children without computer science experience are included most frequently. Race and SES are frequently not reported on, and for race as well as for disabilities there appears a tendency to report these categories only when they deviate from the majority. Further, for several demographic categories different criteria are used to determine them. Finally, most studies take place within schools. These insights can be valuable to correctly interpret current knowledge from K-12 CSEd research, and furthermore can be helpful in developing standards for consistent collection and reporting of demographic information in this community.

2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Joslenne Peña ◽  
Benjamin V. Hanrahan ◽  
Mary Beth Rosson ◽  
Carmen Cole

Many initiatives have focused on attracting girls and young women (K-12 or college) to computer science education. However, professional women who never learned to program have been largely ignored, despite the fact that such individuals may have many opportunities to benefit from enhanced skills and attitudes about computer programming. To provide a convenient learning space for this population, we created and evaluated the impacts of a nine-week web development workshop that was carefully designed to be both comfortable and engaging for this population. In this article, we report how the professionals’ attitudes and skills grew over the course of the workshop and how they now expect to integrate these skills and attitudes into their everyday lives.


Author(s):  
Michael Lodi ◽  
Simone Martini

AbstractThe pervasiveness of Computer Science (CS) in today’s digital society and the extensive use of computational methods in other sciences call for its introduction in the school curriculum. Hence, Computer Science Education is becoming more and more relevant. In CS K-12 education, computational thinking (CT) is one of the abused buzzwords: different stakeholders (media, educators, politicians) give it different meanings, some more oriented to CS, others more linked to its interdisciplinary value. The expression was introduced by two leading researchers, Jeannette Wing (in 2006) and Seymour Papert (much early, in 1980), each of them stressing different aspects of a common theme. This paper will use a historical approach to review, discuss, and put in context these first two educational and epistemological approaches to CT. We will relate them to today’s context and evaluate what aspects are still relevant for CS K-12 education. Of the two, particular interest is devoted to “Papert’s CT,” which is the lesser-known and the lesser-studied. We will conclude that “Wing’s CT” and “Papert’s CT,” when correctly understood, are both relevant to today’s computer science education. From Wing, we should retain computer science’s centrality, CT being the (scientific and cultural) substratum of the technical competencies. Under this interpretation, CT is a lens and a set of categories for understanding the algorithmic fabric of today’s world. From Papert, we should retain the constructionist idea that only a social and affective involvement of students into the technical content will make programming an interdisciplinary tool for learning (also) other disciplines. We will also discuss the often quoted (and often unverified) claim that CT automatically “transfers” to other broad 21st century skills. Our analysis will be relevant for educators and scholars to recognize and avoid misconceptions and build on the two core roots of CT.


2022 ◽  
Vol 22 (2) ◽  
pp. 1-26
Author(s):  
Sadia Sharmin

Computer science is a fast-growing field in today’s digitized age, and working in this industry often requires creativity and innovative thought. An issue within computer science education, however, is that large introductory programming courses often involve little opportunity for creative thinking within coursework. The undergraduate introductory programming course (CS1) is notorious for its poor student performance and retention rates across multiple institutions. Integrating opportunities for creative thinking may help combat this issue by adding a personal touch to course content, which could allow beginner CS students to better relate to the abstract world of programming. Research on the role of creativity in computer science education (CSE) is an interesting area with a lot of room for exploration due to the complexity of the phenomenon of creativity as well as the CSE research field being fairly new compared to some other education fields where this topic has been more closely explored. To contribute to this area of research, this article provides a literature review exploring the concept of creativity as relevant to computer science education and CS1 in particular. Based on the review of the literature, we conclude creativity is an essential component to computer science, and the type of creativity that computer science requires is in fact, a teachable skill through the use of various tools and strategies. These strategies include the integration of open-ended assignments, large collaborative projects, learning by teaching, multimedia projects, small creative computational exercises, game development projects, digitally produced art, robotics, digital story-telling, music manipulation, and project-based learning. Research on each of these strategies and their effects on student experiences within CS1 is discussed in this review. Last, six main components of creativity-enhancing activities are identified based on the studies about incorporating creativity into CS1. These components are as follows: Collaboration, Relevance, Autonomy, Ownership, Hands-On Learning, and Visual Feedback. The purpose of this article is to contribute to computer science educators’ understanding of how creativity is best understood in the context of computer science education and explore practical applications of creativity theory in CS1 classrooms. This is an important collection of information for restructuring aspects of future introductory programming courses in creative, innovative ways that benefit student learning.


2015 ◽  
pp. 918-933
Author(s):  
Eric P. Jiang

With the rapid growth of the Internet and telecommunication networks, computer technology has been a driving force in global economic development and in advancing many areas in science, engineering, health care, business, and finance that carry significant impacts on people and society. As a primary source for producing the workforce of software engineers, computer scientists and information technology specialists, computer science education plays a particularly important role in modern economic growth and it has been invested heavily in many countries around the world. This chapter provides a comparative study of undergraduate computer science programs between China and the United States. The study focuses on the current curricula of computer science programs. It in part is based on the author's direct observation from his recent visits to several universities in China and the conversations he had with administrators and faculty of computer science programs at the universities. It is also based on the author's over two decades experience as a computer science educator at several public and private American institutions of higher educations. The education systems in China and the United States have different features and each of the systems has its strengths and weaknesses. This is likely also true for education systems in other countries. It would be an interesting and important task for us to explore an innovative computer science education program, which perhaps blends the best features of different systems and helps better prepare graduates for the challenges working in an increasingly globalized world. We hope the study presented in this chapter provides some useful insights in this direction.


2018 ◽  
Vol 60 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Mareen Przybylla ◽  
Ralf Romeike

AbstractIn computer science, computer systems are both, objects of investigation and tools that enable creative learning and design. Tools for learning have a long tradition in computer science education. Already in the late 1960s, Papert developed a concept which had an immense impact on the development of informal education in the following years: his theory of constructionism understands learning as a creative process of knowledge construction that is most effective when learners create something purposeful that they can try out, show around, discuss, analyse and receive praise for. By now, there are numerous learning and programming environments that are based on the constructionist ideas. Modern tools offer opportunities for students to learn in motivating ways and gain impressive results in programming games, animations, implementing 3D models or developing interactive objects. This article gives an overview of computer science education research related to tools and media to be used in educational settings. We analyse different types of tools with a special focus on the categorization and development of tools for student adequate physical computing activities in the classroom. Research around the development and evaluation of tools and learning resources in the domain of physical computing is illustrated with the example of “My Interactive Garden”, a constructionist learning and programming environment. It is explained how the results from empirical studies are integrated in the continuous development of the learning material.


Sign in / Sign up

Export Citation Format

Share Document