scholarly journals Identification of potential genes in upper tract urothelial carcinoma using next-generation sequencing with bioinformatics and in vitro analyses

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11343
Author(s):  
Hsiang-Ying Lee ◽  
Ching-Chia Li ◽  
Wei-Ming Li ◽  
Ya-Ling Hsu ◽  
Hsin-Chih Yeh ◽  
...  

Background We aimed to identify prognostic biomarkers of upper tract urothelial carcinomas (UTUCs), including microRNAs (miRNAs) and genes which account for only 5% to 10% of all urothelial carcinomas (UCs). In Taiwan, this figure is markedly higher, where it can reach up to 30% of UC cases. Materials and Methods Using next-generation sequencing (NGS), we analyzed two pairs of renal pelvis tumors and adjacent normal urothelial tissues to screen miRNAs and messenger RNAs. By combining bioinformatics analysis from miRmap, Gene Expression Omnibus (GEO), and Oncomine and Ingenuity® Pathway Analysis databases, we identified candidate genes. To search for upstream miRNAs with exact target binding sites, we used miRmap, TargetScan, and miRDB to enforce evidence. Then, we clarified gene and protein expression through an in vitro study using western blot analysis and quantitative real-time reverse transcriptase-PCR. Results Interactions between selected target genes obtained using the NGS and miRmap methods were assessed through a Venn diagram analysis. Six potential genes, namely, PDE5A, RECK, ZEB2, NCALD, PLCXD3 and CYBRD1 showed significant differences. Further analysis of gene expression from the GEO dataset indicated lower expression of PDE5A, RECK, ZEB2, and CYBRD1 in bladder cancer tissue than in normal bladder mucosa, which indicated that PDE5A, RECK, ZEB2, and CYBRD1 may act as tumor suppressors in UTUC. In addition, we compared the expression of these genes in various UC cell lines (RT4, BFTC905, J82, T24, UMUC3, 5637, BFTC 909, UMUC14) and found decreased expression of PDE5A in muscle-invasive UC cells compared with the RT4 cell line. Furthermore, by using paired UTUC and normal tissues from 20 patients, lower PDE5A expression was also demonstrated in tumor specimens. Conclusions Our findings suggest these candidate genes may play some roles in UTUC progression. We propose that these markers may be potential targets clarified by in vitro and in vivo experiments. PDE5A also potentially presents tumor suppressor genes, as identified by comparing the expression between normal and tumor specimens.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 843-843 ◽  
Author(s):  
Jonathan H. Schatz ◽  
Steven M. Horwitz ◽  
Matthew A. Lunning ◽  
Igor Dolgalev ◽  
Kety Huberman ◽  
...  

Abstract Peripheral T-cell lymphoma (PTCL) makes up about 12 percent of non-Hodgkin lymphoma, comprising 18 diseases that are poorly understood and carry a generally worse prognosis than B-lymphomas. PTCL not otherwise specified (PTCL-NOS), a diagnosis of exclusion, is most common, making up 25-30 percent. Gene-expression studies suggest a heterogeneous origin of this diagnosis, with overlap to other PTCL types, but the genetic factors underlying its pathogenesis are undefined. Current therapy for PTCL-NOS is empiric and ultimately ineffective for most patients. Identification of specific therapeutic targets is therefore a high priority. We have sought better understanding of pathogenesis through next-generation sequencing of PTCL-NOS tumor DNA. Whole-exome sequencing revealed candidate genes but low availability of fresh-frozen samples limited our ability to draw conclusions by this method alone. We therefore sequenced the coding regions of 237 candidate genes in a collection formalin-fixed paraffin-embedded samples. We used Nimblegen Sequence Capture for PCR amplification of exons and Illumina hiSeq for raw sequence generation. Results were aligned to hg19 and compared to dbSNP and the 1,000 genomes data to exclude germline variants. Analysis, including comparison to the COSMIC database of cancer-specific mutations, revealed high-confidence mutations affecting more than 60 known cancer-related genes in 25 PTCL-NOS cases. Recurrent mutations pointed to frequent activation of three key signaling pathways: NF-kB (TNFAIP3), WNT/B-Catenin (APC, CHD8, CELSR2), and NOTCH (NOTCH1, FBXW7). Recurrent deregulation of epigenetic processes was indicated by mutations in genes affecting histone acetylation (EP300, CREBBP), histone methylation (MLL2, KDM6A), and DNA methylation (TET2, DNMT3A). In addition, components of core tumor suppressor pathways showed evidence of frequent inactivation (TP53, ATM, RB1, CUL9, PRKDC). In all, 22 of 25 cases had mutations in at least one of these 17 recurrently mutated genes. Multiple additional candidate disease mechanisms also were suggested by lower-confidence mutations but require confirmation studies, which are under way. In sum, analysis of the coding region of PTCL-NOS tumor DNA suggests a complex and heterogeneous pathogenesis, in line with gene-expression profiling. This work provides an opportunity to better sub-classify entities within the diagnosis of PTCL-NOS and identify specific therapeutic targets and their associated biomarkers. Disclosures: Horwitz: Seattle Genetics, Inc.: Consultancy, Research Funding; Millennium: Consultancy, Research Funding.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22953 ◽  
Author(s):  
Stefan Siebert ◽  
Mark D. Robinson ◽  
Sophia C. Tintori ◽  
Freya Goetz ◽  
Rebecca R. Helm ◽  
...  

2021 ◽  
Author(s):  
Jumpei Yamazaki ◽  
Yuki Matsumoto ◽  
Jaroslav Jelinek ◽  
Teita Ishizaki ◽  
Shingo Maeda ◽  
...  

Abstract Background: DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Results: Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps from 16 somatic tissues. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (>70%, 52.5%-64.6% of all CpG sites analyzed) or unmethylated (<30%, 22.5%-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Conclusions: Our study provides basic dataset for DNA methylation profiles in dogs.


Sign in / Sign up

Export Citation Format

Share Document