scholarly journals Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1296 ◽  
Author(s):  
Yuchen Zhang ◽  
Richard J. Alsop ◽  
Asfia Soomro ◽  
Fei-Chi Yang ◽  
Maikel C. Rheinstädter

The hair is a filamentous biomaterial consisting of thecuticle, thecortexand themedulla, all held together by the cell membrane complex. Thecortexmostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of theα-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

2017 ◽  
Author(s):  
Dmytro Guzenko ◽  
Sergei V. Strelkov

AbstractAccurate molecular structure of the protein dimer representing the elementary building block of intermediate filaments (IFs) is essential towards the understanding of the filament assembly, rationalizing their mechanical properties and explaining the effect of disease-related IF mutations. The dimer contains a ∼300-residue long α-helical coiled coil which is not assessable to either direct experimental structure determination or modelling using standard approaches. At the same time, coiled coils are well-represented in structural databases. Here we present CCFold, a generally applicable threading-based algorithm which produces coiled-coil models from protein sequence only. The algorithm is based on a statistical analysis of experimentally determined structures and can handle any hydrophobic repeat patterns in addition to the most common heptads. We demonstrate that CCFold outperforms general-purpose computational folding in terms of accuracy, while being faster by orders of magnitude. By combining the CCFold algorithm and Rosetta folding we generate representative dimer models for all IF protein classes. The source code is freely available at https://github.com/biocryst/IF


2005 ◽  
Vol 38 (2) ◽  
pp. 274-279 ◽  
Author(s):  
Noboru Ohta ◽  
Toshihiko Oka ◽  
Katsuaki Inoue ◽  
Naoto Yagi ◽  
Satoru Kato ◽  
...  

The cell membrane complex in the cuticle of a human hair fibre or a rat whisker is composed of three layers, that is, β, δ and β layers. The X-ray diffraction technique is a powerful tool to investigate the pathway of aqueous molecules and ions across the cuticle. Small-angle scattering experiments using a micro X-ray beam, which can be applied to a cuticle of 5 µm thickness, provide the structural information on the cell membrane complex without interference from other structures. Taking into account the variation of thickness in the δ and β layers, the overall features of the diffraction profile in a small-angle region can be explained satisfactorily. The method makes it possible to analyse the structure of β, δ and β layers without assuming an ambiguous background in the diffraction profile, and was used for the analysis of a human hair fibre and a rat whisker. In a rat whisker, the X-ray diffraction was stronger and the variation in the layer thickness smaller than in a human hair fibre. This may be due to the fact that the rat whisker had not been washed with soap or cosmetically treated, whereas the variation may depend on the lipids or the proteins that each species naturally has. It is proposed that the method represents convenient tool for quantitative analysis to estimate the thickness of δ and β layers in the cell membrane complex.


2020 ◽  
Vol 76 (3) ◽  
pp. 272-284 ◽  
Author(s):  
Jens M. H. Thomas ◽  
Ronan M. Keegan ◽  
Daniel J. Rigden ◽  
Owen R. Davies

The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1960
Author(s):  
K. Tanuj Sapra ◽  
Ohad Medalia

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


2012 ◽  
Vol 23 (19) ◽  
pp. 3911-3922 ◽  
Author(s):  
Yongqiang Wang ◽  
Xinlei Zhang ◽  
Hong Zhang ◽  
Yi Lu ◽  
Haolong Huang ◽  
...  

The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.


2018 ◽  
Vol 74 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Iracema Caballero ◽  
Massimo Sammito ◽  
Claudia Millán ◽  
Andrey Lebedev ◽  
Nicolas Soler ◽  
...  

ARCIMBOLDOsolves the phase problem by combining the location of small model fragments usingPhaserwith density modification and autotracing usingSHELXE. Mainly helical structures constitute favourable cases, which can be solved using polyalanine helical fragments as search models. Nevertheless, the solution of coiled-coil structures is often complicated by their anisotropic diffraction and apparent translational noncrystallographic symmetry. Long, straight helices have internal translational symmetry and their alignment in preferential directions gives rise to systematic overlap of Patterson vectors. This situation has to be differentiated from the translational symmetry relating different monomers.ARCIMBOLDO_LITEhas been run on single workstations on a test pool of 150 coiled-coil structures with 15–635 amino acids per asymmetric unit and with diffraction data resolutions of between 0.9 and 3.0 Å. The results have been used to identify and address specific issues when solving this class of structures usingARCIMBOLDO. Features fromPhaserv.2.7 onwards are essential to correct anisotropy and produce translation solutions that will pass the packing filters. As the resolution becomes worse than 2.3 Å, the helix direction may be reversed in the placed fragments. Differentiation between true solutions and pseudo-solutions, in which helix fragments were correctly positioned but in a reverse orientation, was found to be problematic at resolutions worse than 2.3 Å. Therefore, after every new fragment-placement round, complete or sparse combinations of helices in alternative directions are generated and evaluated. The final solution is once again probed by helix reversal, refinement and extension. To conclude, density modification andSHELXEautotracing incorporating helical constraints is also exploited to extend the resolution limit in the case of coiled coils and to enhance the identification of correct solutions. This study resulted in a specialized mode withinARCIMBOLDOfor the solution of coiled-coil structures, which overrides the resolution limit and can be invoked from the command line (keyword coiled_coil) orARCIMBOLDO_LITEtask interface inCCP4i.


Sign in / Sign up

Export Citation Format

Share Document