scholarly journals Phylogenomic analysis of the Chilean clade ofLiolaemuslizards (Squamata: Liolaemidae) based on sequence capture data

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3941 ◽  
Author(s):  
Alejandra Panzera ◽  
Adam D. Leaché ◽  
Guillermo D’Elía ◽  
Pedro F. Victoriano

The genusLiolaemusis one of the most ecologically diverse and species-rich genera of lizards worldwide. It currently includes more than 250 recognized species, which have been subject to many ecological and evolutionary studies. Nevertheless,Liolaemuslizards have a complex taxonomic history, mainly due to the incongruence between morphological and genetic data, incomplete taxon sampling, incomplete lineage sorting and hybridization. In addition, as many species have restricted and remote distributions, this has hampered their examination and inclusion in molecular systematic studies. The aims of this study are to infer a robust phylogeny for a subsample of lizards representing the Chilean clade (subgenusLiolaemus sensu stricto), and to test the monophyly of several of the major species groups. We use a phylogenomic approach, targeting 541 ultra-conserved elements (UCEs) and 44 protein-coding genes for 16 taxa. We conduct a comparison of phylogenetic analyses using maximum-likelihood and several species tree inference methods. The UCEs provide stronger support for phylogenetic relationships compared to the protein-coding genes; however, the UCEs outnumber the protein-coding genes by 10-fold. On average, the protein-coding genes contain over twice the number of informative sites. Based on our phylogenomic analyses, all the groups sampled are polyphyletic.Liolaemus tenuis tenuisis difficult to place in the phylogeny, because only a few loci (nine) were recovered for this species. Topologies or support values did not change dramatically upon exclusion ofL. t. tenuisfrom analyses, suggesting that missing data did not had a significant impact on phylogenetic inference in this data set. The phylogenomic analyses provide strong support for sister group relationships betweenL. fuscus,L. monticola,L. nigroviridisandL. nitidus, andL. plateiandL. velosoi. Despite our limited taxon sampling, we have provided a reliable starting hypothesis for the relationships among many major groups of the Chilean clade ofLiolaemusthat will help future work aimed at resolving theLiolaemusphylogeny.

2010 ◽  
Vol 61 (9) ◽  
pp. 980 ◽  
Author(s):  
Catherine J. Nock ◽  
Martin S. Elphinstone ◽  
Stuart J. Rowland ◽  
Peter R. Baverstock

Determining the phylogenetic and taxonomic relationships among allopatric populations can be difficult, especially when divergence is recent and morphology is conserved. We used mitochondrial sequence data from the control region and three protein-coding genes (1253 bp in total) and genotypes determined at 13 microsatellite loci to examine the evolutionary relationships among Australia’s largest freshwater fish, the Murray cod, Maccullochella peelii peelii, from the inland Murray–Darling Basin, and its allopatric sister taxa from coastal drainages, the eastern freshwater cod, M. ikei, and Mary River cod, M. peelii mariensis. Phylogenetic analyses provided strong support for taxon-specific clades, with a clade containing both of the eastern taxa reciprocally monophyletic to M. peelii peelii, suggesting a more recent common ancestry between M. ikei and M. peelii mariensis than between the M. peelii subspecies. This finding conflicts with the existing taxonomy and suggests that ancestral Maccullochella crossed the Great Dividing Range in the Pleistocene and subsequently diverged in eastern coastal drainages. Evidence from the present study, in combination with previous morphological and allozymatic data, demonstrates that all extant taxa are genetically and morphologically distinct. The taxonomy of Maccullochella is revised, with Mary River cod now recognised as a species, Maccullochella mariensis, a sister species to eastern freshwater cod, M. ikei. As a result of the taxonomic revision, Murray cod is M. peelii.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Liping Yan ◽  
Thomas Pape ◽  
Karen Meusemann ◽  
Sujatha Narayanan Kutty ◽  
Rudolf Meier ◽  
...  

Abstract Background Blowflies are ubiquitous insects, often shiny and metallic, and the larvae of many species provide important ecosystem services (e.g., recycling carrion) and are used in forensics and debridement therapy. Yet, the taxon has repeatedly been recovered to be para- or polyphyletic, and the lack of a well-corroborated phylogeny has prevented a robust classification. Results We here resolve the relationships between the different blowfly subclades by including all recognized subfamilies in a phylogenomic analysis using 2221 single-copy nuclear protein-coding genes of Diptera. Maximum likelihood (ML), maximum parsimony (MP), and coalescent-based phylogeny reconstructions all support the same relationships for the full data set. Based on this backbone phylogeny, blowflies are redefined as the most inclusive monophylum within the superfamily Oestroidea not containing Mesembrinellidae, Mystacinobiidae, Oestridae, Polleniidae, Sarcophagidae, Tachinidae, and Ulurumyiidae. The constituent subfamilies are re-classified as Ameniinae (including the Helicoboscinae, syn. nov.), Bengaliinae, Calliphorinae (including Aphyssurinae, syn. nov., Melanomyinae, syn. nov., and Toxotarsinae, syn. nov.), Chrysomyinae, Luciliinae, Phumosiinae, Rhiniinae stat. rev., and Rhinophorinae stat. rev. Metallic coloration in the adult is shown to be widespread but does not emerge as the most likely ground plan feature. Conclusions Our study provides the first phylogeny of oestroid calyptrates including all blowfly subfamilies. This allows settling a long-lasting controversy in Diptera by redefining blowflies as a well-supported monophylum, and blowfly classification is adjusted accordingly. The archetypical blowfly trait of carrion-feeding maggots most likely evolved twice, and the metallic color may not belong to the blowfly ground plan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
JiYoung Yang ◽  
Yu-Chung Chiang ◽  
Tsai-Wen Hsu ◽  
Seon-Hee Kim ◽  
Jae-Hong Pak ◽  
...  

AbstractGenus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.


2020 ◽  
Author(s):  
David M Geiser ◽  
Abdullah Al-Hatmi ◽  
Takayuki Aoki ◽  
Tsutomu Arie ◽  
Virgilio Balmas ◽  
...  

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available.


Zootaxa ◽  
2021 ◽  
Vol 4952 (2) ◽  
pp. 331-353
Author(s):  
CHAO YANG ◽  
LE ZHAO ◽  
QINGXIONG WANG ◽  
HAO YUAN ◽  
XUEJUAN LI ◽  
...  

To gain a better understanding of mitogenome features and phylogenetic relationships in Sylvioidea, a superfamily of Passerida, suborder Passeri, Passeriformes, the whole mitogenome of Alaudala cheleensis Swinhoe (Alaudidae) was sequenced, a comparative mitogenomic analysis of 18 Sylvioidea species was carried out, and finally, a phylogeny was reconstructed based on the mitochondrial dataset. Gene order of the A. cheleensis mitogenome was similar to that of other Sylvioidea species, including the gene rearrangement of cytb-trnT-CR1-trnP-nad6-trnE-remnant CR2-trnF-rrnS. There was slightly higher A+T content than that of G+C in the mitogenome, with an obvious C skew. The ATG codon initiated all protein-coding genes, while six terminating codons were used. The secondary structure of rrnS contained three domains and 47 helices, whereas rrnL included six domains and 60 helices. All tRNAs could be folded into a classic clover-leaf secondary structure except for trnS (AGY). The CR1 could be divided into three domains, including several conserved boxes (C-string, F, E, D, C and B-box, Bird similarity box, CSB1). Comparative analyses within Sylvioidea mitogenomes showed that most mitochondrial features were consistent with that of the A. cheleensis mitogenome. The basal position of the Alaudidae within the Sylvioidea in our phylogenetic analyses is consistent with other recent studies. 


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10364
Author(s):  
Natalia I. Abramson ◽  
Fedor N. Golenishchev ◽  
Semen Yu. Bodrov ◽  
Olga V. Bondareva ◽  
Evgeny A. Genelt-Yanovskiy ◽  
...  

In this article, we present the nearly complete mitochondrial genome of the Subalpine Kashmir vole Hyperacrius fertilis (Arvicolinae, Cricetidae, Rodentia), assembled using data from Illumina next-generation sequencing (NGS) of the DNA from a century-old museum specimen. De novo assembly consisted of 16,341 bp and included all mitogenome protein-coding genes as well as 12S and 16S RNAs, tRNAs and D-loop. Using the alignment of protein-coding genes of 14 previously published Arvicolini tribe mitogenomes, seven Clethrionomyini mitogenomes, and also Ondatra and Dicrostonyx outgroups, we conducted phylogenetic reconstructions based on a dataset of 13 protein-coding genes (PCGs) under maximum likelihood and Bayesian inference. Phylogenetic analyses robustly supported the phylogenetic position of this species within the tribe Arvicolini. Among the Arvicolini, Hyperacrius represents one of the early-diverged lineages. This result of phylogenetic analysis altered the conventional view on phylogenetic relatedness between Hyperacrius and Alticola and prompted the revision of morphological characters underlying the former assumption. Morphological analysis performed here confirmed molecular data and provided additional evidence for taxonomic replacement of the genus Hyperacrius from the tribe Clethrionomyini to the tribe Arvicolini.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


2020 ◽  
Vol 5 (1) ◽  
pp. 119-130 ◽  
Author(s):  
C.-C. Chen ◽  
B. Cao ◽  
T. Hattori ◽  
B.-K. Cui ◽  
C.-Y. Chen ◽  
...  

Paratrichaptum accuratum is a large conspicuous polypore fungus growing on dead or living angiosperm trees in subtropical-boreal areas of China, Indonesia, Japan, and Taiwan. The present study places P. accuratum in the family Gloeophyllaceae that belongs to the order Gloeophyllales within Agaricomycetes (Basidiomycota), based on evidence derived from morphological and ecological characteristics, and phylogenetic analyses of sequences of nuclear rDNA regions (5.8S, nuc 18S, nuc 28S) and protein-coding genes (rpb1, rpb2, and tef1). The analyses presented in this study also give strong support for including Jaapia in Gloeophyllaceae and Gloeophyllales. Thus, the names Jaapiaceae and Jaapiales are considered here as synonyms of Gloeophyllaceae and Gloeophyllales. Since Paratrichaptum represents the earliest diverging lineage in Gloeophyllales, pileate basidiocarps and brown rot appear to be ancestral states of Gloeophyllales. Paratrichaptum accuratum may represent a relic species, according to its phylogenetic position, peculiar distribution pattern and rare occurrence.


Author(s):  
Robert S de Moya ◽  
Kazunori Yoshizawa ◽  
Kimberly K O Walden ◽  
Andrew D Sweet ◽  
Christopher H Dietrich ◽  
...  

Abstract The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and non-parasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and non-parasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2,370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.


Sign in / Sign up

Export Citation Format

Share Document