scholarly journals Non-dispersive phloem-protein bodies (NPBs) of Populus trichocarpa consist of a SEOR protein and do not respond to cell wounding and Ca2+

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4665 ◽  
Author(s):  
Daniel L. Mullendore ◽  
Timothy Ross-Elliott ◽  
Yan Liu ◽  
Hanjo H. Hellmann ◽  
Eric H. Roalson ◽  
...  

Differentiating sieve elements in the phloem of angiosperms produce abundant phloem-specific proteins before their protein synthesis machinery is degraded. These P-proteins initially form dense bodies, which disperse into individual filaments when the sieve element matures. In some cases, however, the dense protein agglomerations remain intact and are visible in functional sieve tubes as non-dispersive P-protein bodies, or NPBs. Species exhibiting NPBs are distributed across the entire angiosperm clade. We found that NPBs in the model tree, Populus trichocarpa, resemble the protein bodies described from other species of the order Malpighiales as they all consist of coaligned tubular fibrils bundled in hexagonal symmetry. NPBs of all Malpighiales tested proved unresponsive to sieve tube wounding and Ca2+. The P. trichocarpa NPBs consisted of a protein encoded by a gene that in the genome database of this species had been annotated as a homolog of SEOR1 (sieve element occlusion-related 1) in Arabidopsis. Sequencing of the gene in our plants corroborated this interpretation, and we named the gene PtSEOR1. Previously characterized SEOR proteins form irregular masses of P-protein slime in functional sieve tubes. We conclude that a subgroup of these proteins is involved in the formation of NPBs at least in the Malpighiales, and that these protein bodies have no role in rapid wound responses of the sieve tube network.

1983 ◽  
Vol 10 (6) ◽  
pp. 561 ◽  
Author(s):  
J Kallarackal ◽  
JA Milburn

Fruit stalks of R. communis were made to exude phloem sap by repeated slicing at intervals of a few minutes. Samples 1 mm thick from the fruit stalks were fixed for electron microscopy. Samples were also fixed and processed for electron microscopy from previously intact (non-exuding) fruit stalks. Examination of the sieve tubes from these two different samples showed predominantly open sieve-plate pores in the exuding fruit stalk. The sieve plates of the non-exuding fruit stalk showed occlusion of the sieve-plate pores by P-protein. The starch grains from the broken plastids also had characteristic distributions. The implications of these observations are discussed in relation to comprehending the mechanism by which sieve-plate pores become choked, and so sealing the sieve-tube system as a result of injury.


2014 ◽  
Vol 70 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Anna Rudzińska-Langwald ◽  
Maria Kamińska

Changes in anatomy and cytology of conducting tissues of <em>Limonium sinuatum</em> Mill. plants affected by aster yellows phytoplasma were investigated. In the phloem tissues of affected plants stem necrosis takes place. In necrotic regions no sieve tubes were observed only necrotic cells and parenchyma cells. The sieve tubes present on the border of necrosis showed collapsed walls and were rich in vesicles. Phytoplasma cells were observed in sieve tubes present in nonnecrotic regions of the phloem. Various structural changes in sieve elements were investigated. The endoplasmic reticulum cistemae were often localised in the lumen of the sieve element without contact with the walls. Such localisation of endoplasmic reticulum was never observed in healthy plants. Vesicles of different size, fuzzy material and clumping of p-proteins were characteristic for sieve elements from nonnecrotic part of phloem. No correlation with the sieve tube structure and the appearance of phytoplasma in a single sieve element was found. In control plants of <em>L. sinuatum</em> phloem observed were phloem parenchyma cells with spiny vesicles (SV). In infected plants there were a remarkable increase in cells with SV. Also the SV itself had not only a vesicular but also a tubular or extended cistern shape.


2000 ◽  
Vol 27 (6) ◽  
pp. 489 ◽  
Author(s):  
Hiroaki Hayashi ◽  
Akari Fukuda ◽  
Nobuo Suzui ◽  
Shu Fujimaki

Many kinds of proteins have been found in the sieve element–companion cell complexes by the analyses of phloem sap and microscopic observations. The cDNAs, which encode some of these sieve-tube proteins, have already been cloned. As mature sieve elements lack nuclei and most ribosomes, sieve-tube proteins have been hypothesized to be synthesized in the companion cells and then transported to the lumina of the functional sieve tubes through the plasmodesmata connecting the companion cells and sieve elements. Soluble proteins present in the sieve tubes can be collected by several techniques, such as incision or the aphid technique. The composition of the proteins in the phloem sap is unique compared with that of tissue extract, suggesting these proteins have important roles for the development and functions of sieve tubes.


Author(s):  
Shaoshuai Liu ◽  
Maria Jose Ladera-Carmona ◽  
Minna M. Poranen ◽  
Aart J. E. van Bel ◽  
Karl-Heinz Kogel ◽  
...  

AbstractMacrophage migration inhibitory factors (MIFs) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. In invertebrates, MIF proteins participate in the modulation of host immune responses when secreted by parasitic organisms, such as aphids. In this study, we assessed the possibility to use MIF genes as targets for RNA interference (RNAi)-based control of the grain aphid Sitobion avenae (Sa) on barley (Hordeum vulgare). When nymphs were fed on artificial diet containing double-stranded (ds)RNAs (SaMIF-dsRNAs) that target sequences of the three MIF genes SaMIF1, SaMIF2 and SaMIF3, they showed higher mortality rates and these rates correlated with reduced MIF transcript levels as compared to the aphids feeding on artificial diet containing a control dsRNA (GFP-dsRNA). Comparison of different feeding strategies showed that nymphs’ survival was not altered when they fed from barley seedlings sprayed with naked SaMIF-dsRNAs, suggesting they did not effectively take up dsRNA from the sieve tubes of these plants. Furthermore, aphids’ survival was also not affected when the nymphs fed on leaves supplied with dsRNA via basal cut ends of barley leaves. Consistent with this finding, the use of sieve tube-specific YFP-labeled Arabidopsis reporter lines confirmed that fluorescent 21 nt dsRNACy3, when supplied via petioles or spraying, co-localized with xylem structures, but not with phloem tissue. Our results suggest that MIF genes are a potential target for insect control and also imply that application of naked dsRNA to plants for aphid control is inefficient. More efforts should be put into the development of effective dsRNA formulations.


IAWA Journal ◽  
1991 ◽  
Vol 12 (2) ◽  
pp. 143-175 ◽  
Author(s):  
H.-Dietmar Behnke

Nondispersive protein bodies present in the sieve elements in addition to dispersive P-protein are characteristic features of many woody dicotyledons; their origin may be nuclear or cytoplasmic. While nuclear nondispersive protein bodies are found in only two families, the Boraginaceae and Myristicaceae, bodies of cytoplasmic origin are present in 39 of the more than 350 families screened. These results were obtained from 228 dicotyledons studied with the electron microscope and data of additional species from the literature. The terminology, origin, form and distribution of nondispersive protein bodies are discussed. Their ultrastructural composition is described as being predominantly spindle-shaped, compound- spherical, rod-shaped and rosette-like. Based on the data accumulated from over 450 species (of about 3000 screened) it is evident that their taxonomic range is confined to a few dicotyledon superorders. Compound-spherical nondispersive protein bodies are characteristic of most of the Malvanae/Violanae; spindle-shaped forms are restricted to the Fabaceae (Rutanae). Rosanae-Proteanae-Myrtanae and the Magnolianae are the only other superorders that contain nondispersive protein bodies in several of their families. Evolutionary trends and possible taxonomic consequences implied in this distribution are discussed.


IAWA Journal ◽  
2000 ◽  
Vol 21 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Teresa Quilhó ◽  
Helena Pereira ◽  
Hans Georg Richter

The axial variation of bark thickness and quantitative anatomical features of Eucalyptus globulus bark were analysed for one site based on individual measurements of ten 15-year-old trees at six height levels (DBH, 5%, 15%, 35%, 55% and 75% of total tree height). The parameters studied were: length, tangential diameter and percentage of sieve tubes; length, width, cell wall thickness and percentage of fibres; height and percentage of rays; percentage of sclereids in the secondary phloem. Bark thickness decreases from base to top of the tree. Fibre width and wall thickness decrease from base upwards. No distinct axial patterns of variation were observed for the other biometric variables studied. Parenchyma is the main cell type of the bark (50%) followed by fibres (27.9%), rays (12.1%), sieve tubes (2.7%), and sclereids (7.3%). The cell type proportions vary significantly within the tree, i.e., parenchyma, ray and sclereid proportions decrease, fibre and sieve tube proportions increase towards the top of the tree.


1957 ◽  
Vol 34 (3) ◽  
pp. 334-341
Author(s):  
T. E. MITTLER

1. A study has been made of the factors involved in the uptake of phloem sap by Tuberolachnus salignus (Gmelin) feeding on the stems of various Salix spp. 2. A method has been developed for maintaining the parthenogenetic viviparous forms of T. salignus in culture throughout the year. 3. It has been established that during normal feeding T. salignus have the tips of their stylets inserted into the phloem sieve-tubes of the host plant. 4. The phloem sieve-tube sap of intact and turgid willow stems is under considerable pressure. This pressure forces the sieve-tube mp up the stylet food canal of feeding aphids, and also causes the sieve-tube sap to exude for many hours from the cut end of embedded stylet bundles. 5. Intact and feeding T. salignus rely almost entirely on this pressure to maintain their normal rate of eieve-tube sap uptake. The aphids must, however, swallow actively in order to ingest.


1979 ◽  
Vol 38 (1) ◽  
pp. 11-22
Author(s):  
K. Esau ◽  
A.C. Magyarosy

The compounds crystalloids formed in sieve element nuclei of Amsinckia douglasiana A. DC. (Boraginaceae) during differentiation of the cell become disaggregated during the nuclear breakdown characteristic of a maturing sieve element. The phenomenon occurs in both healthy and virus-infected plants. The crystalloid component termed cy, which is loosely aggregated, separates from the densely aggregated component termed cx and disperses. The cx component may become fragmented, or broken into large pieces, or remain intact after the cell matures. After their release from the nucleus both crystalloid components become spatially associated with the dispersed P-protein originating in the cytoplasm, but remain distinguishable from it. The component tubules of P-protein are hexagonal in transections and are somewhat wider than the 6-sided cy tubules. The cx tubules are much narrower than the P-protein or the cy tubules and have square transections. Both the P-protein and the products of disintegrated crystalloids accumulate at sieve plates in sieve elements subjected to sudden release of hydrostatic pressure by cutting the phloem. The question of categorizing the tubular components of the nuclear crystalloid of a sieve element with reference to the concept of P-protein is discussed.


Author(s):  
Celine Deffrasnes ◽  
Meng-Xiao Luo ◽  
Linda Wiltzer ◽  
Cassandra T David ◽  
Kim G Lieu ◽  
...  

Bats are reservoirs of many pathogenic viruses including the lyssaviruses rabies virus (RABV) and Australian bat lyssavirus (ABLV). Lyssavirus strains are closely associated with particular host reservoir species, with evidence of specific adaptation. Associated phenotypic changes remain poorly understood but are likely to involve P protein, a key mediator of the intracellular virus-host interface. Here, we examine the phenotype of P protein of ABLV, which circulates as two defined lineages associated with frugivorous and insectivorous bats, providing the opportunity compare proteins of viruses adapted to divergent bat species. We report that key functions of P protein in interferon/STAT1 antagonism and the capacity of P protein to undergo nuclear trafficking differ between lineages. Molecular mapping indicates that these differences are functionally distinct, and appear to involve modulatory effects on regulatory regions or structural impact, rather than changes to defined interaction sequences. This results in partial but significant phenotypic divergence, consistent with &lsquo;fine-tuning&rsquo; to host biology, and with potentially distinct properties in the virus-host interface between bat families that represent key zoonotic reservoirs.


2020 ◽  
Vol 22 (2) ◽  
pp. 388-396 ◽  
Author(s):  
Zhuang Sun ◽  
Yuchen Zhang ◽  
Bin Sun ◽  
Chushu Yang ◽  
Tao Zhang

Microscale sieve-tube carbon from biological phloem tissue goes much beyond nanoscale channel carbon, avoiding clogging and alleviating stability issues.


Sign in / Sign up

Export Citation Format

Share Document