scholarly journals Fish species richness is associated with the availability of landscape components across seasons in the Amazonian floodplain

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5080 ◽  
Author(s):  
Carlos Edwar Carvalho Freitas ◽  
Laurie Laurenson ◽  
Kedma Cristine Yamamoto ◽  
Bruce Rider Forsberg ◽  
Miguel Petrere ◽  
...  

Understanding environmental biodiversity drivers in freshwater systems continues to be a fundamental challenge in studies of their fish assemblages. The present study seeks to determine the degree to which landscape variables of Amazonian floodplain lakes influences fish assemblages in these environments. Fish species richness was estimated in 15 Amazonian floodplain lakes during the high and low-water phases and correlated with the areas of four inundated wetland classes: (i) open water, (ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in different radius circular areas around each sampling site. Data were analyzed using generalized linear models with fish species richness, total and guilds as the dependent variable and estimates of buffered landscape areas as explanatory variables. Our analysis identified the significance of landscape variables in determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial scale was also identified as a significant determinant of fish diversity as landscape effects were more evident at larger spatial scales. In particular, (1) total species richness was more sensitive to variations in the landscape areas than number of species within guilds and (2) the spatial extent of the wetland class of shrubs was consistently the more influential on fish species diversity.

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Elioenai da Silva Oliveira ◽  
Erick Cristofore Guimarães ◽  
Pâmella Silva de Brito ◽  
Lucas de Oliveira Vieira ◽  
Rafael Ferreira de Oliveira ◽  
...  

Abstract: The Munim River basin is one of the main river drainages of the Hydrological unit Maranhão, but there are few published studies which focus on ichthyological surveys and taxonomic work within this basin. The present study aims to provide a fish species inventory of the Mata da Itamacaoca, one of the few urban protected areas from the upper Munim River basin, comparing the ichthyofauna with other lists by conducted at the upper Munim River basin. A total of 42 collection expeditions were conducted, the sampling was conducted at five collecting sites distributed within the boundaries of Mata de Itamacaoca, upper Munim River basin. Diversity indices were calculated and generalised linear models (GLMs) were employed to assess differences in species richness, diversity and evenness depending on season and location in relation to the reservoir dam wall. In order to visualize fish community differences, non-metric multidimensional scaling (nMDS) and a one-way PERMANOVA was used to understand whether factors of site, season and location to the dam wall had an effect on fish community compositions. A total of six orders, 13 families, and 23 fish species were found, and the order with the highest species richness, considering all reaches, was Characiformes followed by Cichliformes. The most abundant species was Nannostomus beckfordi, while Pimelodella parnahybae and Hoplerythrinus unitaeniatus were the rarer species sampled. There were no alien invasive species collected within the study area. Species richness was significantly higher below the dam wall, but there were no other significant differences in diversity indices with regards to season or location. Fish community composition was significantly different above and below the dam wall and was significantly affected by sampling site. Season did not have an effect on fish community. This study corroborates other studies conducted in the Unidade Hidrológica Maranhão sensu Hubbert and Renno (2006), that the ichthyofaunal composition and taxonomy of species within this region face major data deficits, anthropogenic impacts, this study may be a baseline for comparing similar environments throughout the region.


2012 ◽  
Vol 28 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Carlos Granado-Lorencio ◽  
Alejandra Gulfo ◽  
Frank Alvarez ◽  
Luz Fernanda Jiménez-Segura ◽  
Juan David Carvajal-Quintero ◽  
...  

Abstract:A number of studies have pointed out that abiotic factors and recolonization dynamics appear to be more important than biotic interactions in structuring river–fish assemblages. In this paper, we studied the fish assemblages in 27 floodplain lakes, with perennial connection to the river, in the middle section of the Magdalena River (Colombia), to examine spatial pattern in freshwater fish diversity in relation to some environmental parameters. Our objective was to examine relationships between floodplain-lake fish communities and environmental variables associated with lake morphology, water chemistry and river–floodplain connectivity in a large river–floodplain ecosystem. During the study, a total of 18 237 fish were caught from 50 species (regional richness; 17 were migrants and 33 residents). In the present study, the most diverse order was Characiformes with 20 species, followed by Siluriformes, with 19 species. Characidae and Loricaridae were the richest families. The range of species richness (local richness) varied between five and 39 species. Similarity of local assemblages (using the presence–absence data) depends on the distance between lakes. A positive relationship was observed between the Ln of the total abundance of each species and the number of lakes where they were found. Out of all the environmental parameters taken in the lakes, only the size (Log Area) and relative perimeter length are significantly related to local assemblage species richness. It has not been possible to demonstrate that the connectivity (distance) from lakes to the main river can be considered a predictor of the local richness.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250427
Author(s):  
Leanne M. Currey-Randall ◽  
Ronen Galaiduk ◽  
Marcus Stowar ◽  
Brigit I. Vaughan ◽  
Karen J. Miller

Marine diversity across the Australian continental shelf is shaped by characteristic benthic habitats which are determined by geomorphic features such as paleoshorelines. In north-western Australia there has been little attention on the fish communities that inhabit an ancient coastline at ~125 m depth (the designated AC125), which is specified as a key ecological feature (KEF) of the region and is thought to comprise hard substrate and support enhanced diversity. We investigated drivers of fish species richness and assemblage composition spanning six degrees of latitude along sections of the ancient coastline, categorised as ‘on’ and ‘off’ the AC125 based on depth, across a range of habitats and seafloor complexity (~60–180 m depth). While some surveyed sections of the AC125 had hard bottom substrate and supported enhanced fish diversity, including over half of the total species observed, species richness and abundance overall were not greater on the AC125 than immediately adjacent to the AC125. Instead, depth, seafloor complexity and habitat type explained patterns in richness and abundance, and structured fish assemblages at both local and broad spatial scales. Fewer fishes were associated with deep sites characterized by negligible complexity and soft-bottom habitats, in contrast to shallower depths that featured benthic biota and pockets of complex substrate. Drivers of abundance of common species were species-specific and primarily related to sampling Areas, depth and substrate. Fishes of the ancient coastline and adjacent habitats are representative of mesophotic fish communities of the region, included species important to fisheries and conservation, and several species were observed deeper than their currently known distribution. This study provides the first assessment of fish biodiversity associated with an ancient coastline feature, improving our understanding of the function it plays in regional spatial patterns in abundance of mesophotic fishes. Management decisions that incorporate the broader variety of depths and habitats surrounding the designated AC125 could enhance the ecological role of this KEF, contributing to effective conservation of fish biodiversity on Australia’s north west shelf.


2016 ◽  
Vol 14 (3) ◽  
Author(s):  
Nara Tadini Junqueira ◽  
Diego Rodrigues Macedo ◽  
Rafael Couto Rosa de Souza ◽  
Robert Mason Hughes ◽  
Marcos Callisto ◽  
...  

ABSTRACT Effects of environmental variables at different spatial scales on freshwater fish assemblages are relatively unexplored in Neotropical ecosystems. However, those influences are important for developing management strategies to conserve fish diversity and water resources. We evaluated the influences of site- (in-stream) and catchment-scale (land use and cover) environmental variables on the abundance and occurrence of fish species in streams of the Upper Araguari River basin through use of variance partitioning with partial CCA. We sampled 38 1st to 3rd order stream sites in September 2009. We quantified site variables to calculate 11 physical habitat metrics and mapped catchment land use/cover. Site and catchment variables explained > 50% of the total variation in fish species. Site variables (fish abundance: 25.31%; occurrence: 24.51%) explained slightly more variation in fish species than catchment land use/cover (abundance: 22.69%; occurrence: 18.90%), indicating that factors at both scales are important. Because anthropogenic pressures at site and catchment scales both affect stream fish in the Upper Araguari River basin, both must be considered jointly to apply conservation strategies in an efficient manner.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
George Kazakis ◽  
Dany Ghosn ◽  
Ilektra Remoundou ◽  
Panagiotis Nyktas ◽  
Michael A. Talias ◽  
...  

High mountain zones in the Mediterranean area are considered more vulnerable in comparison to lower altitudes zones. Lefka Ori massif, a global biodiversity hotspot on the island of Crete is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring network. The paper examines species and vegetation changes with respect to climate and altitude over a seven-year period (2001–2008) at a range of spatial scales (10 m Summit Area Section-SAS, 5 m SAS, 1 m2) using the GLORIA protocol in a re-survey of four mountain summits (1664 m–2339 m). The absolute species loss between 2001–2008 was 4, among which were 2 endemics. At the scale of individual summits, the highest changes were recorded at the lower summits with absolute species loss 4 in both cases. Paired t-tests for the total species richness at 1 m2 between 2001–2008, showed no significant differences. No significant differences were found at the individual summit level neither at the 5 m SAS or the 10 m SAS. Time series analysis reveals that soil mean annual temperature is increasing at all summits. Linear regressions with the climatic variables show a positive effect on species richness at the 5 m and 10 m SAS as well as species changes at the 5 m SAS. In particular, June mean temperature has the highest predictive power for species changes at the 5 m SAS. Recorded changes in species richness point more towards fluctuations within a plant community’s normal range, although there seem to be more significant diversity changes in higher summits related to aspects. Our work provides additional evidence to assess the effects of climate change on plant diversity in Mediterranean mountains and particularly those of islands which remain understudied.


2018 ◽  
Vol 28 (3) ◽  
pp. 315-327 ◽  
Author(s):  
D. R. Barneche ◽  
E. L. Rezende ◽  
V. Parravicini ◽  
E. Maire ◽  
G. J. Edgar ◽  
...  

2007 ◽  
Vol 50 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Yzel Rondon Súarez ◽  
Sabrina Bigatão Valério ◽  
Karina Keyla Tondado ◽  
Alexandro Cezar Florentino ◽  
Thiago Rota Alves Felipe ◽  
...  

The influence of spatial, temporal and environmental factors on fish species diversity in headwater streams in Paraguay and Paraná basins, Brazil was examined. A total of 4,605 individuals were sampled, distributed in 60 species. The sampled streams in Paraná basin presented a larger total species richness (42) than Paraguay streams (40). However the estimated richness was larger in Paraguay basin (53) than Paraná streams (50). The streams of Paraná basin had a greater mean species richness and evenness, while more individuals per sample were found in the Paraguay basin. Difference between the sub-basins were found in the Paraguay basin, while for the basin of Paraná, richness and evenness vary significantly between the sub-basins, but the number of individuals varied seasonally. The most important environmental factors to species diversity and abundance were altitude, water temperature, stream width and stream depth for both the basins.


2004 ◽  
Vol 64 (3a) ◽  
pp. 501-510 ◽  
Author(s):  
F. K. Siqueira-Souza ◽  
C. E. C. Freitas

The fish community of the Solimões floodplain lakes was studied by bimonthly samples taken from May 2001 to April 2002. These were carried out at lakes Maracá (03º51'33"S, 62º35'08,6"W), Samaúma (03º50'42,1"S, 61º39'49,3"W), and Sumaúma and Sacambú (03º17'11,6"S and 60º04'31,4"W), located between the town of Coari and the confluence of the Solimões and Negro rivers. Collections were done with 15 gillnets of standardized dimensions with several mesh sizes. We collected 1,313 animals distributed in 77 species, belonging to 55 genera of 20 families and 5 orders. Characiformes was the most abundant Order, with a larger number of representatives in the Serrasalmidae and Curimatidae. The most abundant species in the samplings were Psectrogaster rutiloides (132 individuals), Pigocentrus nattereri (115 individuals), and Serrasalmus elongatus (109 individuals). Lakes Samaúma, Sacambú, and Sumaúma were adjusted to logarithmic and lognormal series. The diversity exhibited an inverse gradient to the river flow, showing the highest diversity at Lake Sumaúma, followed by Samaúma, Sacambú, and Maracá. Species richness estimated through the jackknife technique ranged from 78 to 107 species.


<em>Abstract.</em>—We examined fish assemblage responses to urban intensity gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (<em>r </em>= –0.82, <EM>P </EM>= 0.001) and BOS (<em>r </em>= –0.48, <EM>P </EM>= 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (<em>r </em>= – 0.71, <EM>P </EM>= 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (<em>r </em>= –0.56, <EM>P </EM>= 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller <em>Campostoma oligolepis</em>, largemouth bass <em>Micropterus salmoides</em>, and creek chub <em>Semotilus atromaculatus</em>, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch <em>Perca flavescens</em>, bluegill <em>Lepomis macrochirus</em>, yellow bullhead <em>Ameiurus natalis</em>, largemouth bass, pumpkinseed <em>L. gibbosus</em>, brown bullhead <em>A. nebulosus</em>, and redfin pickerel <em>Esox americanus</em>. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species’ life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to urbanization.


2019 ◽  
Vol 76 (4) ◽  
pp. 1131-1139 ◽  
Author(s):  
Ben L Gilby ◽  
Andrew D Olds ◽  
Christopher J Henderson ◽  
Nicholas L Ortodossi ◽  
Rod M Connolly ◽  
...  

Abstract The seascape context of coastal ecosystems plays a pivotal role in shaping patterns in fish recruitment, abundance, and diversity. It might also be a principal determinant in structuring the recruitment of fish assemblages to restored habitats, but the trajectories of these relationships require further testing. In this study, we surveyed fish assemblages from 14 restored oyster reefs and 14 control sites in the Noosa River, Queensland, Australia, that differed in the presence or absence of seagrass within 500 m, over four periods using baited cameras. Fish assemblages at oyster reefs differed from those at control sites, with higher species richness (1.4 times) and more individuals of taxa that are harvested by fishers (1.8 times). The presence or absence of seagrass nearby affected the abundance of a key harvestable fish species (yellowfin bream Acanthopagrus australis) on oyster reefs, but not the overall composition of fish assemblages, species richness, or the total abundance of harvestable fishes overall. These findings highlight the importance of considering species-specific patterns in seascape utilization when selecting restoration sites and setting restoration goals, and suggest that the effects of restoration on fish assemblages might be optimized by focusing efforts in prime positions in coastal seascapes.


Sign in / Sign up

Export Citation Format

Share Document