scholarly journals Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5487 ◽  
Author(s):  
Tomáš Klouček ◽  
David Moravec ◽  
Jan Komárek ◽  
Ondřej Lagner ◽  
Přemysl Štych

Grassland is one of the most represented, while at the same time, ecologically endangered, land cover categories in the European Union. In view of the global climate change, detecting its change is growing in importance from both an environmental and a socio-economic point of view. A well-recognised tool for Land Use and Land Cover (LULC) Change Detection (CD), including grassland changes, is Remote Sensing (RS). An important aspect affecting the accuracy of change detection is finding the optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables can produce inaccurate results burdened with a number of uncertainties. The aim of our study is to find the most suitable variables for the detection of grassland to cropland change, based on a pair of high resolution images acquired by the Landsat 8 satellite and from the vector database Land Parcel Identification System (LPIS). In total, 59 variables were used to create models using Generalised Linear Models (GLM), the quality of which was verified through multi-temporal object-based change detection. Satisfactory accuracy for the detection of grassland to cropland change was achieved using all of the statistically identified models. However, a three-variable model can be recommended for practical use, namely by combining the Normalised Difference Vegetation Index (NDVI), Wetness and Fifth components of Tasselled Cap. Increasing number of variables did not significantly improve the accuracy of detection, but rather complicated the interpretation of the results and was less accurate than detection based on the original Landsat 8 images. The results obtained using these three variables are applicable in landscape management, agriculture, subsidy policy, or in updating existing LULC databases. Further research implementing these variables in combination with spatial data obtained by other RS techniques is needed.

Author(s):  
Djamel Bouchaffra ◽  
Faycal Ykhlef

The need for environmental protection, monitoring, and security is increasing, and land cover change detection (LCCD) can aid in the valuation of burned areas, the study of shifting cultivation, the monitoring of pollution, the assessment of deforestation, and the analysis of desertification, urban growth, and climate change. Because of the imminent need and the availability of data repositories, numerous mathematical models have been devised for change detection. Given a sample of remotely sensed images from the same region acquired at different dates, the models investigate if a region has undergone change. Even if there is no substantial advantage to using pixel-based classification over object-based classification, a pixel-based change detection approach is often adopted. A pixel can encompass a large region, and it is imperative to determine whether this pixel (input) has changed or not. A changed image is compared to the available ground truth image for pixel-based performance evaluation. Some existing change detection systems do not take into account reversible changes due to seasonal weather effects. In other words, when snow falls in a region, the land cover is not considered as a change because it is seasonal (reversible). Some approaches exploit time series of Landsat images, which are based on the Normalized Difference Vegetation Index technique. Others evaluate built-up expansion to assess urban morphology changes using an unsupervised approach that relies on labels clustering. Change detection methods have also been applied to the field of disaster management using object-oriented image classification. Some methodologies are based on spectral mixture analysis. Other techniques invoke a similarity measure based on the evolution of the local statistics of the image between two dates for vegetation LCCD. Probabilistic approaches based on maximum entropy have been applied to vegetation and forest areas, such as Hustai National Park in Mongolia. Researchers in this field have proposed an LCCD scheme based on a feed-forward neural network using backpropagation for training. This paper invokes the new concept of homology theory, a subfield of algebraic topology. Homology theory is incorporated within a Structural Hidden Markov Model.


2018 ◽  
Vol 50 (2) ◽  
pp. 154
Author(s):  
Ardiansyah Ardiansyah ◽  
Revi Hernina ◽  
Weling Suseno ◽  
Faris Zulkarnain ◽  
Ramadhani Yanidar ◽  
...  

This study developed a model to identify the percent of building density (PBD) of DKI Jakarta Province in each pixel of Landsat 8 imageries through a multi-index approach. DKI Jakarta province was selected as the location of the study because of its urban environment characteristics.  The model was constructed using several predictor variables i.e.  Normalized Difference Built-up Index (NDBI), Soil-adjusted Vegetation Index (SAVI), Normalized Difference Water Index (NDWI), and surface temperature from thermal infrared sensor (TIRS). The calculation of training sample data was generated from high-resolution imagery and was correlated to the predictor variables using multiple linear regression (MLR) analysis. The R values of predictor variables are significantly correlated. The result of MLR analysis shows that the predictor variables simultaneously have correlation and similar pattern to the PBD based on high-resolution imageries. The Adjusted R Square value is 0,734, indicates that all four variables influences predicting the PBD by 73%.


The key to proper governance of the municipal bodies lies in knowing the geography of the region. The land cover of the region changes with respect to time. Also, there are seasonal variation in the layout of the waterbodies. Manual verification and surveying of these things becomes very difficult for want of resources. Remote Sensing Images play a very important role in mapping the land cover. In this paper, we consider such remotely sensed Multispectral Images, taken from Landsat-8. Parametric Machine learning algorithm like Maximum Likelihood Classifier has been used on those images to classify the land cover. Normalized Difference Vegetation Index (NDVI) has been calculated and integrates with the classification process. Four basic land covers have been identified for the purpose namely Water, Vegetation, Built-up and Barren soil. The area of study is Bangalore urban region where we find that the water bodies are decreasing day by day. An overall efficiency of 82% with a kappa hat 0f 0.67 has been achieved with the method. The user and the producer accuracies have also been tabulated in the Results part. The results show the land cover changes in a temporal manner


2020 ◽  
Vol 12 (18) ◽  
pp. 3038
Author(s):  
Dhahi Al-Shammari ◽  
Ignacio Fuentes ◽  
Brett M. Whelan ◽  
Patrick Filippi ◽  
Thomas F. A. Bishop

A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production.


2018 ◽  
Vol 10 (9) ◽  
pp. 1478
Author(s):  
Ahmed Harun-Al-Rashid ◽  
Chan-Su Yang

This work focuses on the detection of tiny macroalgae patches in the eastern parts of the Yellow Sea (YS) using high-resolution Landsat-8 images from 2014 to 2017. In the comparison between floating algae index (FAI) and normalized difference vegetation index (NDVI) better detection by FAI was observed, but many tiny patches still remained undetected. By applying a modification on the FAI around 12% to 27% increased and correct detection of macroalgae is achieved from 35 images compared to the original. Through this method many scattered tiny patches were detected in June or July in Korea Bay and Gyeonggi Bay. Though it was a small-scale phenomenon they occurred in the similar period of macroalgal bloom occurrence in the YS. Thus, by using this modified method we could detect macroalgae in the study areas around one month earlier than the previously used Geostationary Ocean Color Imager NDVI-based detection. Later, more macroalgae patches including smaller ones occupying increased areas were detected. Thus, it seems that those macroalgae started growing locally from tiny patches rather than being transported from the western parts of the YS. Therefore, this modified FAI could be used for the precise detection of macroalgae.


Sign in / Sign up

Export Citation Format

Share Document