scholarly journals Effects of early life stage exposure of largemouth bass to atrazine or a model estrogen (17α-ethinylestradiol)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9614
Author(s):  
Jessica K. Leet ◽  
Catherine A. Richter ◽  
Robert S. Cornman ◽  
Jason P. Berninger ◽  
Ramji K. Bhandari ◽  
...  

Endocrine disrupting contaminants are of continuing concern for potentially contributing to reproductive dysfunction in largemouth and smallmouth bass in the Chesapeake Bay watershed (CBW) and elsewhere. Exposures to atrazine (ATR) have been hypothesized to have estrogenic effects on vertebrate endocrine systems. The incidence of intersex in male smallmouth bass from some regions of CBW has been correlated with ATR concentrations in water. Fish early life stages may be particularly vulnerable to ATR exposure in agricultural areas, as a spring influx of pesticides coincides with spawning and early development. Our objectives were to investigate the effects of early life stage exposure to ATR or the model estrogen 17α-ethinylestradiol (EE2) on sexual differentiation and gene expression in gonad tissue. We exposed newly hatched largemouth bass (LMB, Micropterus salmoides) from 7 to 80 days post-spawn to nominal concentrations of 1, 10, or 100 µg ATR/L or 1 or 10 ng EE2/L and monitored histological development and transcriptomic changes in gonad tissue. We observed a nearly 100% female sex ratio in LMB exposed to EE2 at 10 ng/L, presumably due to sex reversal of males. Many gonad genes were differentially expressed between sexes. Multidimensional scaling revealed clustering by gene expression of the 1 ng EE2/L and 100 µg ATR/L-treated male fish. Some pathways responsive to EE2 exposure were not sex-specific. We observed differential expression in male gonad in LMB exposed to EE2 at 1 ng/L of several genes involved in reproductive development and function, including star, cyp11a2, ddx4 (previously vasa), wnt5b, cyp1a and samhd1. Expression of star, cyp11a2 and cyp1a in males was also responsive to ATR exposure. Overall, our results confirm that early development is a sensitive window for estrogenic endocrine disruption in LMB and are consistent with the hypothesis that ATR exposure induces some estrogenic responses in the developing gonad. However, ATR-specific and EE2-specific responses were also observed.

1989 ◽  
Vol 46 (7) ◽  
pp. 1188-1202 ◽  
Author(s):  
K. E. Holtze ◽  
N. J. Hutchinson

Lethality of low pH and Al to egg and fry stages of common shiner (Notropis cornutus), white sucker (Catostomus commersoni), walleye (Stizostedion vitreum), lake whitefish (Coregonus clupeaformis), smallmouth bass (Micropterus dolomieui), and largemouth bass (M. salmoides) was determined in a series of laboratory tests in soft (Ca = 4.0 mg/L) water. Low pH was lethal to cleavage eggs in the first 4 d of exposure, to eyed eggs in the immediate prehatch period and to fry following their transition to branchial respiration. Early life stage response to Al was determined by their sensitivity to low pH. Al prolonged survival of cleavage eggs at pH = 4.2, was detrimental to eyed eggs and fry at pH 4.4–5.4 and was most lethal within 0.3 pH units of the pH which was lethal in the absence of Al. In situ distribution of four of the six species was adequately explained by lethality of low pH alone to cleavage eggs or fry. Sensitivity to low pH and Al produced estimates of pH > 5.9 (common shiner), pH > 5.4 (lake whitefish, white sucker, walleye), and pH > 5.1 (smallmouth and largemouth bass) for survival of early life stages in acidified waters.


BMC Genomics ◽  
2006 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristiina AM Vuori ◽  
Heikki Koskinen ◽  
Aleksei Krasnov ◽  
Paula Koivumäki ◽  
Sergey Afanasyev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document