scholarly journals Developmental disturbances in early life stage mortality (M74) of Baltic salmon fry as studied by changes in gene expression

BMC Genomics ◽  
2006 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristiina AM Vuori ◽  
Heikki Koskinen ◽  
Aleksei Krasnov ◽  
Paula Koivumäki ◽  
Sergey Afanasyev ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9614
Author(s):  
Jessica K. Leet ◽  
Catherine A. Richter ◽  
Robert S. Cornman ◽  
Jason P. Berninger ◽  
Ramji K. Bhandari ◽  
...  

Endocrine disrupting contaminants are of continuing concern for potentially contributing to reproductive dysfunction in largemouth and smallmouth bass in the Chesapeake Bay watershed (CBW) and elsewhere. Exposures to atrazine (ATR) have been hypothesized to have estrogenic effects on vertebrate endocrine systems. The incidence of intersex in male smallmouth bass from some regions of CBW has been correlated with ATR concentrations in water. Fish early life stages may be particularly vulnerable to ATR exposure in agricultural areas, as a spring influx of pesticides coincides with spawning and early development. Our objectives were to investigate the effects of early life stage exposure to ATR or the model estrogen 17α-ethinylestradiol (EE2) on sexual differentiation and gene expression in gonad tissue. We exposed newly hatched largemouth bass (LMB, Micropterus salmoides) from 7 to 80 days post-spawn to nominal concentrations of 1, 10, or 100 µg ATR/L or 1 or 10 ng EE2/L and monitored histological development and transcriptomic changes in gonad tissue. We observed a nearly 100% female sex ratio in LMB exposed to EE2 at 10 ng/L, presumably due to sex reversal of males. Many gonad genes were differentially expressed between sexes. Multidimensional scaling revealed clustering by gene expression of the 1 ng EE2/L and 100 µg ATR/L-treated male fish. Some pathways responsive to EE2 exposure were not sex-specific. We observed differential expression in male gonad in LMB exposed to EE2 at 1 ng/L of several genes involved in reproductive development and function, including star, cyp11a2, ddx4 (previously vasa), wnt5b, cyp1a and samhd1. Expression of star, cyp11a2 and cyp1a in males was also responsive to ATR exposure. Overall, our results confirm that early development is a sensitive window for estrogenic endocrine disruption in LMB and are consistent with the hypothesis that ATR exposure induces some estrogenic responses in the developing gonad. However, ATR-specific and EE2-specific responses were also observed.


2021 ◽  
Author(s):  
Charanveer Sahota ◽  
Kassia Hyek ◽  
Brady Surbey ◽  
Chris Kennedy

Abstract Early life stages of Pink salmon (Oncorhynchus gorbuscha) are at risk of exposure to the active ingredients of chemotherapeutant formulations (hydrogen peroxide [HP], azamethiphos [AZ], emamectin benzoate [EB], cypermethrin [CP] and deltamethrin [DM]) used to control sea lice in salmon aquaculture. LC50 values (95% confidence intervals) for acute 48-h water exposures in order of least to most toxic to seawater-adapted pink salmon fry were: HP (227 [138–418] mg/L), EB (1090 [676–2006] µg/L), AZ (80 [52–161] µg/L), CP (5.1 [3.0-10.5] µg/L), and DM (980 [640–1800] ng/L). In subchronic 10-d lethality sediment exposure tests, LC50 values (95% confidence intervals) in order of least to most toxic were: EB (2065 [1384–3720] µg/kg), CP (97 [58–190] µg/kg), and DM (1035 [640–2000] ng/kg). Alterations in behaviour varied between chemicals; no chemical attracted pink salmon fry; fish avoided HP to a limited extent at 50 mg/L), as well as EB (300 µg/L), and AZ (50 µg/L). Significant concentration-dependent decreases in olfactory responsiveness to food extract were seen following AZ, CP and DM exposures that occurred at lower concentrations with longer exposure periods (10 µg/L, 0.5 µg/L and 100 ng/L thresholds at 168 h). Following 10-d sediment exposures, olfaction was only affected by CP exposure at 50 µg/kg. Significant decreases in swimming performance (Ucrit) occured for HP, AZ, CP and DM at concentrations as low as 100 mg/L, 10 µg/L, 2 µg/L and 200 ng/L, respectively. This study provides comprehensive data on the lethal and sublethal effects of aquaculture chemotherapeutant exposure in early life stage pink salmon.


Sign in / Sign up

Export Citation Format

Share Document