Brassinolide on In Vitro Growth of Apical Meristem of Bananas

Author(s):  
FLORENDA C. BALLESTEROS-TEMANEL

Brassinosteroids (BRs) are new class of hormones noted to perform multiplephysiological functions in plant growth and development and have the potentialof influencing cell and tissue growth in vitro. Many naturally occurring BRs,including brassinolide, have been discovered, their mode of action and their growthpromoting activities on plants. The use of brassinolide in in vitro propagation isnew. The Murashige and Skoog (1962) medium was used as basal medium. Plantgrowth regulators - IAA, BA and BR - were added to the medium. The study usedthe Completely Randomized Design (CRD) in factorial with three replications.The cultivar of banana and plant growth substances affected the number of budsproduced, shoot length, root length, and stem girth. The interaction of thesetwo factors (cultivar x PGR) influenced the number of buds produced in vitroand the shoot length of the meriplants. The study shows that brassinolide has aninfluence on shoot induction, proliferation, and elongation of bananas in in vitro propagation.Keywords: Agriculture, in vitro propagation, induction, proliferation, elongation, apical meristem, plant growth regulators, cultivars, Isabela, Philippines

2020 ◽  
Vol 23 (1) ◽  
pp. 178-190
Author(s):  
Jeillan Hussein ◽  
Diaa ibraheam

Marumi kumquat (Fortunella Japonica) is culture for its valuable nutritional value and medicinal importance in many regions of the world. The current study aimed to evaluate the effect of two types of media enriched with different concentrations of fructose and different plant growth regulators and different fructose concentration on in vitro propagation of Fortunella Japonica. The findings showed that the most effective treatment for explant surface sterilization was by using 0.1% HgCl2 for ten minutes which give best results for production contamination-free explants at the initiation cultures. At multiplication stage, WPM medium gave better results at all tested BA levels as compared with MS medium. No significant differences were showed by using BA alone or in combination with GA3 in the measured parameters. It has been observed that WPM medium supplemented with 0.5mgl-1 BA with the presence of 30mgl-1 fructose was able to give the highest shoot length (1.56cm) with maximum shoots number/explant 9.0 and highest leaves number/explant (21.0). The proliferated shoots were exposed to full strength MS medium salts supplemented with 2mgl-1 NAA which showed the highest ratio of rooting. In vitro rooted plantlets were gradually acclimatized and transferred to open air conditions, which recorded a high survive rate reached to 92%


2020 ◽  
Vol 3 (4) ◽  
pp. 43-52
Author(s):  
Murtadha Murtadha ◽  
M. Abduh Ulim ◽  
Syamsuddin Syamsuddin

Abstrak.  Penelitian bertujuaan untuk mendapatkan isolat rizobakteri yang mampu berperan sebagai agens biokontrol terhadap pengendalian patogen R. microporus dan P. noxius secara in vitro serta sebagai agen rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian dilaksanakan di Laboratorium Ilmu dan Teknologi Benih Jurusan Agroteknologi, Fakultas Pertanian, Universitas Syiah Kuala, Darussalam Banda Aceh, mulai Oktober sampai Desember 2017. Penelitian ini menggunakan Rancangan Acak Lengkap non faktorial. Faktor yang diteliti yaitu isolat rizobakteri, taraf yang dicobakan terdiri dari 15 isolat dan dua patogen antagonis R. microporus dan P. noxius, yang diulang sebanyak 3 kali sehingga terdapat 90 unit satuan percobaan. Hasil penelitian menunujukkan isolat rizobakteri mampu menekan pertumbuhan koloni cendawan patogen. Pada patogen uji R. microporus terdapat 3 rizobakteri yang paling baik yaitu isolat DLG5/3 dengan persentase penghambatan 68,33%, DLG4/1 dengan persentase penghambatan 66,66% dan DLG4/7 dengan persentase penghambatan 63,33%. Pada patogen uji P.noxius terdapat dua rizobakteri yang paling baik dalam menghambat pertumbuhan koloni cendawan patogen yaitu isolat DLG5/1 dengan persentase penghambatan 60,33%, dan DKP6/3 dengan persentase penghambatan 52,50%. Pada laju penghambatan isolat rizobakteri yang paling baik pada patogen R. microporus yaitu isolat DLG6/4 dan DKP4/1 dengan nilai rerata laju penghambatan 20,33 mm/hari. Pada patogen P. noxius menunjukan isolat rizobakteri yang paling baik yaitu isolat DLG4/1 dengan nilai laju penghambatan 12,05 mm/hari.Exploration of Indigenous Rizobacteria and Antagonistic Test against Patogen Rigidoporus microporus And Phellinus noxius In Rubber Plant (Hevea brasiliensis) In VitroAbstract. The research was conducted to obtain rhizobacteria isolates capable of acting as biocontrol agents on pathogen control of R. microporus and P. noxius in vitro and as plant growth promoter rhizobacteria (PGPR). The research was conducted at the Science and Technology of seed Laboratory, Department of Agrotechnology, Faculty of Agriculture, Syiah Kuala University, Darussalam Banda Aceh, starts from October to December 2017. The research using Completely Randomized Design non factorial. Factors researched were rhizobacteria isolates, the experimental stage consisted of 15 isolates and 2 antagonist were R. microporus dan P. noxius, and 3 time repeated until be found 90 units of treatment. The results showed that rhizobacteria isolates capable to inhibith growth of colonies pathogenic. In the pathogen of R. microporus test, there are 3 better rhizobacteria were DLG5/3 isolate with 68.33% inhibition percentage, DLG4/1 with 66.66% inhibition percentage and DLG4/7 with 63,33% inhibition percentage. In the pathogen of P. noxius there are 2 best rhizobacteria inhibiting growth, DLG5/1 isolate with 60.33% inhibition percentage, and DKP6/3 with 52,50% inhibition percentage. In the pathogen of R. microporus test, there are 2 better rhizobacteria were DLG6/4 and DKP4/1 with 20,33 mm/day inhibition percentage. In the pathogen of P. noxius test,  the best rhizobacteria were DLG4/1  with 12,05 mm/day inhibition percentage. 


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


2014 ◽  
Vol 4 (3) ◽  
pp. 96-103
Author(s):  
Abdelali Chourfi ◽  
Tajelmolk Alaoui ◽  
Ghizlane Echchgadda

Laurus nobilis L. is among the species which are most threatened by massive degradation in Morocco. The multiplication by seed or by cuttings gives very low percentages of recovery that is insufficient to meet the demand of growing market. In vitro culture proves to be a tremendous asset to solve this problem. Our work has focused on the study of seed germination of this species and its multiplication from microcuttings. Finally, we studied the ac-climatization ability of the plantlets resulting from this germination. The study of the germination, via the further measurement of the length of the aerial part and the roots and the number of axillary buds for nine weeks, showed that the MS basal medium was more efficient than media 1/2M.S and WPM. Among the eight tested hormones, IAA yielded the best growth of the plantlets. Hormonal combination of NAA and kinetin resulted into a per-centage of the greatest success in reaching 67 % micropropagation. The study also revealed that the MS basal medium in the presence of the IAA plants can acclimate most easily in two types of substrates with improved development in the peat alone.


1987 ◽  
Vol 65 (1) ◽  
pp. 72-75 ◽  
Author(s):  
J. Y. Peron ◽  
E. Regnier

A method for rapid micropropagation of sea kale (Crambe maritima L.) was developed. Petiole explants placed in vitro on a medium containing 0.5 mg/L indoleacetic acid (IAA), 6.0 mg/L kinetin, and 1.5 mg/L benzylaminopurine developed callus within 15 days and shoots within 28 days. Nearly four adventitious shoots could be developed within 3 weeks by placing the initial shoot on media without IAA. To develop roots, the shoots were then transferred to the basal medium containing 0.1 to 1.0 mg/L indolbutyric or α-naphthaleneacetic acid. Rooted plantlets were obtained within 2 or 3 weeks. After an acclimatization period of 6 weeks in a greenhouse in unsterilized medium, the plantlets could be set outdoors.


Sign in / Sign up

Export Citation Format

Share Document