scholarly journals Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

2016 ◽  
Vol 49 (6) ◽  
pp. 712-719 ◽  
Author(s):  
Jae-Hoon Shin ◽  
Nan-Hee An ◽  
Sang-Min Lee ◽  
Jung-Hun Ok ◽  
Byun-Woo Lee
1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


2002 ◽  
Vol 138 (3) ◽  
pp. 301-310 ◽  
Author(s):  
A. COLLINS ◽  
D. W. ALLINSON

Under perennial grasslands, nitrogen contained in organic matter becomes available at varying rates via mineralization throughout the growing season. The amount of N present at any given time indicates only the quantity immediately present, and does not include N which has already been removed either by leaching or uptake into the plant system, nor the N which will become available as organic matter breaks down over time. Long-term aerobic laboratory incubation methods have been used successfully to estimate potential N mineralization under various cropping conditions. They had not been used successfully, however, to estimate potential N availability under perennial grassland.In this research, soil samples from two long-term perennial grassland sites were taken before and after N fertilizer application at rates of 0, 175, 350 and 525 kg/ha. The soils were incubated in the laboratory at 35 °C and were eluted at 2, 4, 8, 12, 16, 22 and 30-week intervals, the length of time prescribed for determining N mineralization potential. Because a plateau had not been reached, incubation was allowed to continue for 198 weeks and 148 weeks for the pre- and post-N samples, respectively. Total N was high, as was soil organic matter in both sets of soil samples. Nitrogen mineralization potential was underestimated after 30 weeks of incubation, and overestimated after 148 weeks. The closest agreement between N measured and the estimated N mineralization potential, came after 198 weeks of incubation. This study confirmed the high N-supplying capacity of soil under long-term perennial grasslands. It also indicated that the recommended 30-week period needed to estimate N mineralization potential under other cropping systems was insufficient for a perennial grassland soil. Cumulative differences in N mineralization were found with varying rates of N fertilizer application, but these differences were rarely seen on an individual weekly basis, nor were they significant at the termination of the experiment. The response to N application differed by site.


1993 ◽  
Vol 73 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Régis R. Simard ◽  
Adrien N'dayegamiye

An understanding of the mineralization factors in contrasting cultivated soils is necessary for accurate predictions of plant-available N. The objective of this work was to determine the N-mineralization potential and mathematical models that can properly describe the dynamics of the mineralization process in 20 meadow soils from Quebec. The mineralization was monitored over 55.4 wk in a laboratory incubation at 20 °C with intermittent leaching. The cumulative mineralization curves in most soils were characterized by definite lags or a sigmoidal pattern and near-linear release with time after 20 wk. The data were best described by the Gompertz equation; first-order models were inadequate. The total amount of mineralizable N and the potential mineralization rate were very closely correlated with the total amounts of C or N (r > 0.73; P < 0.01). The clay content was also correlated with these mineralization parameters and significantly improved the prediction of the cumulative and potential N-mineralization rate estimated from the total N or C content of soils. The relationships with other soil characteristics such as soil pH and available nutrient contents were weak but significant. The results of this study suggest that textural classes be added in the correction for organic matter content to improve the precision in N-fertilizer recommendation and in soil-quality classifications based on potential mineralization rate. Key words: Soil quality, potentially mineralizable N, Gompertz equation, soil organic matter, soil texture, C, N


2017 ◽  
Vol 9 (2) ◽  
pp. 1123-1128
Author(s):  
Manpreet S. Mavi ◽  
B. S. Sekhon ◽  
Jagdeep Singh ◽  
O. P. Choudhary

An understanding of the mineralization process of organic amendments in soil is required to synchronize N release with crop demand and protect the environment from excess N accumulation. Therefore, we conducted a laboratory incubation experiment to assess nitrogen mineralization potential of crop residues (rice and wheat straw) and organic manures (poultry manure, farmyard manure, cowpea and sesbania) in two benchmark soils (Typic Haplustept and Typic Ustifluvents) of semi-arid region of Punjab, India, varying in textureat field capacity moisture level at a constant temperature of 331°C. Mineralization was faster during first 7 days of incubation in Typic Haplustept and upto 14 days in Typic Ustifluvents which subsequently declined over time. In both soils, net N mineralization continued to increase with increasing period of incubation (expect with crop residues) and was significantly higher in Typic Ustifluvents (54-231µg g-1) than Typic Haplustept (33-203 µg g-1). Compared to unamended soils, percent N mineralized was highest is sesbania (35-40 %) followed by cowpea (32-37 %) and least in wheat (10-11 %) after 42 days of incubation. Thus, sesbania and cowpea may preferably be used to meetthe large N demand during early period of plant growth. Further, mineralization rate constants (k) also indicated that availability of mineral N was significantly higher with application of organic amendments than unamended control treatments in both soils. Therefore, it may be concluded that considerable economy in the use of inorganic N fertilizer can be employed if N mineralization potential of organic inputs is taken into consideration.


2021 ◽  
Vol 9 (3) ◽  
pp. 230-236
Author(s):  
Subhash Singh ◽  

The mathematical description of N mineralization in soils like parabolic model, exponential model, hyperbolic model, zero order models etc, is a possible 3 approach to characterize and quantify the organic matters pool and mineralization constant rate. The single exponential model most widely used for soil N mineralization, although other types have also been tested. Several kinetic models are often used to estimate the kinetic of N mineralization, thus a model is selected based on the highest coefficient of determination (r2) and the lowest standard error (Wijanarko & Purwanto, 2016). The N mineralization capacity through long term incubation procedures. From their studies they proposed an asymptotic model of time course of N mineralization, making it possible to calculate the N mineralization potential of the soils (Stanford & Smith, 1972). Kinetics parameters in mineralization study can be potentially used to access the mineralization-immobilization process in soils under varying environmental and management conditions. Nitrogen-use efficiency can be enhanced through the understanding of N-mineralization potential of different organic source.


Sign in / Sign up

Export Citation Format

Share Document