scholarly journals Nitrogen release kinetics of organic nutrient sources in two benchmark soils of Indo-Gangetic plains

2017 ◽  
Vol 9 (2) ◽  
pp. 1123-1128
Author(s):  
Manpreet S. Mavi ◽  
B. S. Sekhon ◽  
Jagdeep Singh ◽  
O. P. Choudhary

An understanding of the mineralization process of organic amendments in soil is required to synchronize N release with crop demand and protect the environment from excess N accumulation. Therefore, we conducted a laboratory incubation experiment to assess nitrogen mineralization potential of crop residues (rice and wheat straw) and organic manures (poultry manure, farmyard manure, cowpea and sesbania) in two benchmark soils (Typic Haplustept and Typic Ustifluvents) of semi-arid region of Punjab, India, varying in textureat field capacity moisture level at a constant temperature of 331°C. Mineralization was faster during first 7 days of incubation in Typic Haplustept and upto 14 days in Typic Ustifluvents which subsequently declined over time. In both soils, net N mineralization continued to increase with increasing period of incubation (expect with crop residues) and was significantly higher in Typic Ustifluvents (54-231µg g-1) than Typic Haplustept (33-203 µg g-1). Compared to unamended soils, percent N mineralized was highest is sesbania (35-40 %) followed by cowpea (32-37 %) and least in wheat (10-11 %) after 42 days of incubation. Thus, sesbania and cowpea may preferably be used to meetthe large N demand during early period of plant growth. Further, mineralization rate constants (k) also indicated that availability of mineral N was significantly higher with application of organic amendments than unamended control treatments in both soils. Therefore, it may be concluded that considerable economy in the use of inorganic N fertilizer can be employed if N mineralization potential of organic inputs is taken into consideration.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 444 ◽  
Author(s):  
Chen-Chi Tsai ◽  
Yu-Fang Chang

Adding biochar to excessive compost amendments may affect compost mineralization rate and nitrogen (N) availability. The objective of this 371-day incubation study was to evaluate the effects of four proportions of woody biochar (0%, 0.5%, 1.0%, and 2.0%) from lead tree (Leucaena leucocephala (Lam.) de. Wit) biochar produced at 750 °C through dynamic mineral N and N mineralization rates in three rural soils (one Oxisol and two Inceptisols). In each treatment, 5% poultry–livestock manure compost was added to serve as an excessive application. The results indicated that the biochar decreased available total inorganic nitrogen (TIN) (NO3−-N+NH4+-N) by on average 6%, 9% and 19% for 0.5%, 1.0% and 2.0% treatments, respectively. The soil type strongly influenced the impact of the biochar addition on the soil nitrogen mineralization potential, especially the soil pH and clay content. This study showed that the co-application of biochar and excessive compost benefited the agricultural soils by improving NO3−-N retention in agroecosystems. The application of biochar to these soils to combine it with excessive compost appeared to be an effective method of utilizing these soil amendments, as it diminished the net N mineralization potential and reduced the nitrate loss of the excessive added compost.


2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1470
Author(s):  
Inmaculada Bautista ◽  
Luis Lado-Monserrat ◽  
Cristina Lull ◽  
Antonio Lidón

In order to assess the sustainability of silvicultural treatments in semiarid forests, it is necessary to know how they affect the nutrient dynamics in the forest. The objective of this paper is to study the effects of silvicultural treatments on the net N mineralization and the available mineral N content in the soil after 13 years following forest clearings. The treatments were carried out following a randomized block design, with four treatments and two blocks. The distance between the two blocks was less than 3 km; they were located in Chelva (CH) and Tuéjar (TU) in Valencia, Spain. Within each block, four experimental clearing treatments were carried out in 1998: T0 control; and T60, T75 and T100 where 60%, 75% and 100 of basal area was eliminated, respectively. Nitrogen dynamics were measured using the resin tube technique, with disturbed samples due to the high stoniness of the plots. Thirteen years after the experimental clearings, T100, T75 and T60 treatments showed a twofold increase in the net mineralization and nitrification rates with respect to T0 in both blocks (TU and CH). Within the plots, the highest mineralization was found in sites with no plant cover followed by those covered by undergrowth. These results can be explained in terms of the different litterfall qualities, which in turn are the result of the proportion of material originating from Pinus halepensis Mill. vs. more decomposable undergrowth residues.


1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


1992 ◽  
Vol 72 (1) ◽  
pp. 31-42 ◽  
Author(s):  
D. L. Burton ◽  
W. B. McGill

We compared changes in components of the N-mineralization cascade ranging from the very specific, such as a deaminase, to the highly integrated, such as biomass in a Black Chernozemic seeded to barley (Hordeum vulgare L.) under field conditions at Edmonton. Changes in enzyme content were related to soil [Formula: see text] to determine if the microbial environment changed sufficiently to exert feedback control on N mineralizing reactions and thereby to be detected. Histidase and protease were chosen as model systems for depolymerization and deamination respectively because information exists on their control in pure culture studies, on histidine content and control of histidase in soil, and assay procedures are available for soils. We observed an inverse relationship of labile histidase activity with [Formula: see text] in soils with high [Formula: see text] content and low [Formula: see text] ratio. This relationship provides indirect evidence for [Formula: see text] control of histidase content, but emphasizes that it is only one element of a complex control mechanism. Conversely, enzyme content was not rate limiting to net N mineralization, or sensitive to common control mechanisms. Biomass-C, an integrative measure of substrate supply, potential biological activity and enzymatic activity, describes net mineral-N production better than do indices of any single step. Regular spatial variability is exhibited by [Formula: see text] (and [Formula: see text]). [Formula: see text] is a product of mineralization; a substrate for immobilization, nitrification, plant uptake, and other reactions; and may also be a regulator of activity, or synthesis, of some enzymes. It is intriguing that none of the variables that influence mineral N, such as enzyme activity, biomass, or respiration, varied spatially in a statistically identifiable manner, yet [Formula: see text] did. Key words: Nitrogen mineralization, enzyme content, biomass, protease, histidase, ammonium regulation


Author(s):  
P. Padmavathi ◽  
I. Y.L.N Murthy ◽  
M. Suresh

A field experiment was conducted to study the effect of nutrient management practices on the performance of soybean - safflower sequence in Vertisols. The safflower equivalent yield (2418 kg/ha-1); gross returns (Rs. 53196/ha-1); net returns (Rs 33734/ha-1) and B:C ratio (2.8) were significantly superior either with the application of NPK to the system + 5 t FYM/ha to safflower; or NPK to the system + soybean residues to safflower; or NPK to the system + both crop residues. Similar trend was also observed with respect to soil health indicators viz., soil respiration (108 mg C/g soil/10 days), microbial biomass C (284 mg C/g soil), microbial biomass N (41.9 mg N/g soil), mineral N (13.8 mg N/g soil) and net N mineralization (5.4 mg N/g soil/ 10 days). Significant improvement was observed in terms of PGPR and Trichoderma sp were found when NPK + crop residues were applied to the system.


2011 ◽  
Vol 35 (4) ◽  
pp. 1141-1149 ◽  
Author(s):  
Sérgio Ricardo Silva ◽  
Ivo Ribeiro da Silva ◽  
Nairam Félix de Barros ◽  
Eduardo de Sá Mendonça

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.


Sign in / Sign up

Export Citation Format

Share Document