scholarly journals Simulation and Analysis of Small-Scale Solar Adsorption Cooling System for Cold Climate

Author(s):  
Karolis Januševičius ◽  
◽  
Giedrė Streckienė ◽  
Violeta Misevičiūtė ◽  
◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1499 ◽  
Author(s):  
Marzia Khanam ◽  
Skander Jribi ◽  
Takahiko Miyazaki ◽  
Bidyut Saha ◽  
Shigeru Koyama

2012 ◽  
Vol 30 ◽  
pp. 704-714 ◽  
Author(s):  
Sébastien Thomas ◽  
Samuel Hennaut ◽  
Stefan Maas ◽  
Philippe Andre

1986 ◽  
Vol 108 (3) ◽  
pp. 239-245 ◽  
Author(s):  
A. Sakoda ◽  
M. Suzuki

Quantitative analyses are tried for the simultaneous transport of heat and adsorbate in the operation of a closed-type solar-powered adsorption cooling system. Experimental results obtained with a small-scale unit are successfully interpreted by the model proposed here, which takes into account adsorption properties of a combination of adsorbate and adsorbent employed in the system, structures of the equipment, and its operating conditions. Also, the coefficient of performances of the system of various conditions are estimated by numerical simulations on the basis of the model. Structures of the container of adsorbents are optimized to provide larger COP.


2017 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Ahmed M. Reda ◽  
Ahmed Hamza H. Ali ◽  
Ibrahim S. Taha ◽  
Mahmoud G. Morsy

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 949
Author(s):  
Maged Mohammed ◽  
Nashi Alqahtani ◽  
Hamadttu El-Shafie

Dates are subjected to postharvest losses in quality and quantity caused by water loss, fermentation, insect infestation, and microbial spoilage during storage. Cold storage is the main element in the postharvest quality management used for fruit preservation. Although cold storage is used for dates, precision control of the relative humidity (RH) using ultrasonic applications is not used thus far, or it is applied to other fruits on a small scale. Therefore, we designed and constructed an ultrasonic humidifier (DUH) for RH control in the cold storage room (CSR) of dates. The optimum air velocity of 3 m s−1 at the outlets of the DUH ducts produced a mist amount of 6.8 kg h-1 with an average droplet diameter of 4.26 ± 1.43 µm at the applied voltage of 48 V and frequency of 2600 kHz of the transducers. The experimental validation was carried out by comparing a CSR controlled with the DUH with two conventional CSRs. The three tested CSRs were similar in dimensions, cooling system, and amount of stored dates. The time required for cooling 800 kg of dates in the controlled CSR from 25 °C to the target temperature of 5 °C was approximately 48 h. The DUH precisely controlled the RH at the maximum RH set point of 80% in the tested CSR at 5 °C. The controlled RH at 80% has a positive impact on the physicochemical characteristics of the stored dates. It significantly reduced the weight loss of the fruits and preserved fruit mass, moisture content, water activity, firmness, and color parameters. However, no significant effect was observed on fruit dimensions, sphericity, and aspect ratio. The microbial loads of mesophilic aerobic bacteria, molds, and yeasts fell within the acceptable limits in all tested CSRs. Both stored date fruits and artificially infested dates showed no signs of insect activity in the controlled CSR at the temperature of 5 °C and RH of 80%. The DUH proved to be a promising technology for postharvest quality management for dates during cold storage.


2020 ◽  
Vol 6 ◽  
pp. 168-173
Author(s):  
Ahmed A. Hassan ◽  
Ahmed E. Elwardany ◽  
Shinichi Ookawara ◽  
Ibrahim I. El-Sharkawy

2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


Sign in / Sign up

Export Citation Format

Share Document