scholarly journals Effects of Section Size and Melt Holding on the Mechanical Properties and Microstructure of High Silicon Ductile Cast Iron

2012 ◽  
Vol 32 (2) ◽  
pp. 81-85
Author(s):  
Suk-Ju Lee ◽  
Ki-Ho Park ◽  
Sang-Hee Lee ◽  
Hae-Wook Kwon
2018 ◽  
Vol 925 ◽  
pp. 304-310 ◽  
Author(s):  
Philipp Weiß ◽  
Moritz Riebisch ◽  
Andreas Bührig-Polaczek

High silicon grades of ductile cast iron are known to be highly advantageous in regard to technically relevant properties and economic efficiency. In particular, the outstanding mechanical properties lead to an increasing demand since 2011, the year of incorporation to the EN 1563 standard. However, low impact resistance and spontaneous failure are concerns that limit the application, especially at lower temperatures. Silicon serves as a solid solution strengthener. By the addition of cobalt, aluminum and nickel as additional solid solution strengthener, an improvement in mechanical properties compared to only silicon could be obtained. Previous studies showed that the addition of 1.5 wt.% Ni to an EN-GJS-500-14 grade with 3.8 wt.% Si resulted in a tensile strength of 650 MPa at 15 % elongation. In the present study, silicon was substituted stepwise by nickel and aluminum, simultaneously aiming at the retention of the mechanical properties of the EN-GJS-500-14 grade. By decreasing the silicon content to 3.3 wt.% Si at 1.1 wt.% Ni and 0.2 wt.% Al, EN-500-14 was obtained. Even though, the presence of pearlite in the matrix was observed, this substitution of silicon led to an increase in Charpy-V-notch toughness by 4 Joule at room temperature. For further alloy design of high silicon ductile cast iron for simultaneously substituting silicon and improving the mechanical properties and notch toughness, the restrictions for pearlite formation must be complied.


2014 ◽  
Vol 107 (17) ◽  
pp. 32-35 ◽  
Author(s):  
P. S.Hiremath ◽  
Anita Sadashivappa ◽  
Prakash Pattan

2020 ◽  
Vol 998 ◽  
pp. 42-47
Author(s):  
Alena Pribulová ◽  
Peter Futaš ◽  
Marcela Pokusova

Worldwide production of ductile iron castings reached in year 2017 26,428,148 metric tons, which is 34% of the total weight of all castings made from cast iron. The most significant increase in ductile iron castings was recorded in Slovakia, up to 78.6%. Castings from ductile iron have a very huge utilization thanks their very good foundry and mechanical properties. The current economic situation in all industries forces entrepreneurs and producers to rationalize production and reduce production costs, with a worldwide trend to increase the share of steel scrap, a technology for the production of ductile cast iron. The paper describes the results of research focused on the effect of charge composition, mainly the share of scrap steel on the final properties and structure of ductile iron EN-GJS-500-7 under the operating conditions of foundry. Six melts with different charge composition were made. The samples from all melts were taken and chemical analysis, microstructure analysis and testing on mechanical properties were made on them. The mechanical properties of produced globular cast irons were according with the relevant standard. It is important to mention that there has been a significant increase in strength characteristics in melts in which the carbon content exceeded 4% (CE = 4.7 and 4.8%, respectively).


Author(s):  
Dhruv Patel ◽  
Devendra Parmar ◽  
Siddharthsinh Jadeja

Microstructural adaptation of cast iron alloys by inoculation is a well-known practice to swell their mechanical properties. In foundries, several inoculants have been used to refine grain structure, and to obtain uniform distribution of graphite flakes. Inoculation is one of the most critical steps in cast iron production. The effectiveness of inoculants depends on melt temperature, method of addition, type of inoculants, and holding time. In this paper, the effect of Ca-based, Ba-based, Ca-Ba based and Sr-based inoculants on microstructure and tensile properties of grey cast iron IS-210 and spheroidal graphite iron IS-1862 is reported. Results showed both Ca and Ba based inoculants were effective in obtaining uniform distribution of flaky and nodular graphite in IS-210, and IS-1862 cast irons, respectively. But in a case of Sr-based inoculant were highly effective for increase the nodularity of SG cast iron as well as succeed supreme yield strength for both grey and ductile cast iron. The amounts of ferrite in the as-cast matrix are excess with controlled granulometry for elimination of primary carbide in Sr-based inoculant.


Sign in / Sign up

Export Citation Format

Share Document