Influence of Charge Composition on EN-GJS-500-7 Ductile Iron Properties in Foundry Operating Conditions

2020 ◽  
Vol 998 ◽  
pp. 42-47
Author(s):  
Alena Pribulová ◽  
Peter Futaš ◽  
Marcela Pokusova

Worldwide production of ductile iron castings reached in year 2017 26,428,148 metric tons, which is 34% of the total weight of all castings made from cast iron. The most significant increase in ductile iron castings was recorded in Slovakia, up to 78.6%. Castings from ductile iron have a very huge utilization thanks their very good foundry and mechanical properties. The current economic situation in all industries forces entrepreneurs and producers to rationalize production and reduce production costs, with a worldwide trend to increase the share of steel scrap, a technology for the production of ductile cast iron. The paper describes the results of research focused on the effect of charge composition, mainly the share of scrap steel on the final properties and structure of ductile iron EN-GJS-500-7 under the operating conditions of foundry. Six melts with different charge composition were made. The samples from all melts were taken and chemical analysis, microstructure analysis and testing on mechanical properties were made on them. The mechanical properties of produced globular cast irons were according with the relevant standard. It is important to mention that there has been a significant increase in strength characteristics in melts in which the carbon content exceeded 4% (CE = 4.7 and 4.8%, respectively).

2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


2010 ◽  
Vol 139-141 ◽  
pp. 235-238
Author(s):  
De Qiang Wei

In this paper, the low alloy bainite ductile cast iron has been obtained by a new heat treatment technique of the step austempering in room-temperature machine oil. The effects of element boron, manganese and copper on structure and mechanical properties of the bainite ductile cast Iron in above-mentioned process are investigated. The phenomenon, hardness lag of the alloyed bainite ductile cast Iron, has been discussed. It shows that after the step austempering in room-temperature machine oil, the hardness will increases with the time. It is found that boron and manganese can increase the hardness and reduce the impact strength while copper can increase the impact strength. The results show that reasonable alloyed elements can improve mechanical properties of the bainite ductile cast Iron. Essentially, hardness lag of the alloyed bainite ductile cast Iron is resulted from solute drag-like effect.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-8
Author(s):  
O.I. Sekunowo ◽  
J.O. Ugboaja ◽  
J.A. Tiamiyu

Production of ductile iron using ferrosilicon-magnesium master alloy in melt treatment is currently fraught with challenges bothering on cost and availability. In this study the suitability of cashew nut shells ash (CNSA) as a viable alternative to magnesium master alloys employed in the treatment of molten cast iron for enhanced mechanical properties was studied. The carbonized CNSA used varied from 2-10 wt. % to treat different heat batches; CA1-CA5 containing varied amount of CNSA, CaO and FeSi in the molten cast iron. The cast samples were subjected to both mechanical characterisation (tensile, hardness and impact) and microstructural analysis using Instron electromechanical machine, impact tester and scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS). Results show that the 8 wt. % CNSA addition demonstrated the best mechanical properties comparable to ASTM A536 ferritic ductile cast iron. Specifically, the 8 wt. % CNSA cast samples exhibited 433 MPa tensile strength, 144HRC hardness and ductility of 14.7%. Contributions to improved mechanical properties may be attributed to the development of sufficient fractions of graphite nodules during melt treatment with CNSA. These outcomes are a boost both to the production of quality ductile irons and a cleaner environment. Keywords: Nodularisation, ductile-iron, cashew-nut, ferrosilicon-magnesium alloy, mechanical properties


2014 ◽  
Vol 635 ◽  
pp. 177-181
Author(s):  
Marianna Bartošová ◽  
Alena Pribulová ◽  
Jozef Bibko ◽  
Peter Futáš

Cast iron with spheroidal graphite is a very good constructional material. Production of castings from standard kinds of nodular cast irons is quite good managed, but manufacturing of mark GJS 400-18 LT with excelent strength and plastic properties by minus temperatures is complicated, because it reacts very sensitively on the changing of melting conditions and metallugical treatment. The contribution is focused on an observation of changing of structure and mechanical properties by different ways of metallurgical treatment. In operating conditions of foundry three series of melts were made. From every melt the mould with testing pieces „Y“ with dimensions 25 x 40 x 140 mm was poured. Tensile test, impact test and metalographic analyse were realized on the test samples.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1022
Author(s):  
Jan Jezierski ◽  
Michał Jureczko ◽  
Rafał Dojka

The purpose of this paper was to analyze the process factors affecting the occurrence of lustrous carbon defects in ductile cast iron castings when using the lost-foam casting (LFC) method. This phenomenon results in creating raw surface defects, which sometimes may even lead to cast iron scrapping. A series of trial melting batches were carried out for variable process assumptions. The analysis was performed to reflect, to the greatest extent possible, real foundry production conditions. Industrial tests were performed in Odlewnia Rafamet Sp. z o.o., Kuźnia Raciborska, Poland. The polystyrene patterns created by gluing components together, used in the tests, met the requirements of the high-tech lost-foam casting (LFC) process. The performed analysis allowed the obtaining of lustrous carbon defects in test castings as well as the determination of the process parameters with the highest impact on lustrous carbon inclusions in ductile iron castings. The test results were used to eliminate the possibility of creating a defect and thus directly improve the efficiency of the lost-foam casting (LFC) process used in the foundry.


2014 ◽  
Vol 474 ◽  
pp. 291-296 ◽  
Author(s):  
Milan Vaško ◽  
Alan Vaško

The contribution deals with comparison of microstructure, mechanical properties and fatigue properties of synthetic nodular cast irons with a different ratio of steel scrap in a charge. Chemical composition of individual meltages was regulated alternatively by ferrosilicon (FeSi) and carburizer or metallurgical silicon carbide (SiC). The paper shows that SiC additive positively influences the microstructure, mechanical properties as well as fatigue properties of nodular cast iron, especially in the meltages with higher ratio of steel scrap in the charge. Moreover, production of synthetic nodular cast irons with SiC additive is economically advantageous.


2017 ◽  
Vol 62 (4) ◽  
pp. 2273-2280
Author(s):  
B. Mrzygłód ◽  
A. Kowalski ◽  
I. Olejarczyk-Wożenska ◽  
T. Giętka ◽  
M. Głowacki

Abstract The results of examinations of microstructure and an analysis of its impact on selected mechanical properties of austempered ductile iron (ADI) were presented in the paper. The ADI was produced from the ductile iron containing 1.56% Ni only alloying addition. The effect of the austempering time and temperature on the microstructure and mechanical properties of the examined cast iron was considered. Constant conditions of austenitizing were assumed and six variants of the austempering treatment were adopted. The studyof mechanical properties included a static tensile test, Charpy impact strength test and Brinellhardness measurement. This work complements the knowledge about alloying additions effect on microstructure and mechanical properties of ADI and focuses on the impact of a single alloying element (Ni).


Sign in / Sign up

Export Citation Format

Share Document