scholarly journals Effects of Mg Addition on Heat Treatment and Mechanical Properties of A356 Alloy

2016 ◽  
Vol 36 (6) ◽  
pp. 195-201
Author(s):  
Jae-Chan Jo ◽  
Kwang-Sam Kim ◽  
In-Taek Im ◽  
Dae-Hwan Kim ◽  
Sung-Yong Shim ◽  
...  
2016 ◽  
Vol 256 ◽  
pp. 270-275
Author(s):  
Xiang Jie Yang ◽  
Yi He ◽  
Yong Bo Zhu ◽  
Chuan Lin Hu ◽  
Hong Min Guo ◽  
...  

In this paper, the castings of A356 alloy were made by the rheo-squeeze casting with slurry-making from the process of LSPSF. Experiments were designed to study the influence of three parameters in rheo-squeeze casting process, such as injection speed, mould preheating temperature and injection pressure, on castings performance. The results show that high-quality castings were produced with the injection speed of 0.5m/s ,the mould preheating temperature of 240°C, the injection pressure of 50MPa. The mechanical properties, such as the yield strength, tensile strength and elongation of the castings with T6 heat treatment are 241 MPa, 328MPa and 11.6%, respectively.


2019 ◽  
Vol 285 ◽  
pp. 139-145
Author(s):  
Le Cheng ◽  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Xiang Kai Zhang ◽  
Ai Di Shen ◽  
...  

Semi-solid squeeze casting (SS-SC) is a new processing technology which combines semi-solid processing (SSP) and squeeze casting (SC). In this process, semi-solid slurry fills mold by using its rheological property and solidifies under high pressure. It has several advantages, such as stable filling, small heat impact to the mold, low cost, high density and excellent mechanical properties of castings, which receives more and more attention. The microstructure of castings provided by SS-SC is quite different from that of casting provided by conventional SC in as-cast condition, which leads to differences in the evolution of microstructure and mechanical properties in heat treatment process. In this study, A356.2 aluminum alloys castings were provided by both SS-SC and conventional SC respectively. The evolution of microstructure and mechanical properties of castings during heat treatment was investigated to obtain the best mechanical properties of semi-solid squeeze castings. Keywords:Microstructure, Mechanical properties, Heat treatment, A356 alloy, Semi-Solid Squeeze Casting


2016 ◽  
Vol 850 ◽  
pp. 526-531
Author(s):  
Mao Wen Liu ◽  
Wen Long Xiao ◽  
Cong Xu ◽  
Hiroshi Yamagata ◽  
Jiu Xin Chen ◽  
...  

The influences of spinning deformation and heat treatment on microstructure and tensile properties of A356 alloy at different cooling rates were investigated in this study by optical and scanning electron microscopes. The results indicated that spinning deformation enhanced the tensile properties of the alloy due to the reduction of Si size and porosity percentage, especially in the samples with coarse microstructure. Heat treatment increased the strength while decreased the ductility of the alloy because of the precipitation of brittle Mg2Si in Al matrix. It is suggested that the spinning deformation processing is an effective technique to produce A356 alloy wheels with high mechanical properties.


2011 ◽  
Vol 31 (5) ◽  
pp. 262-266 ◽  
Author(s):  
Sang-Mi Kim ◽  
Kee-Do Woo ◽  
Ji-Young Kim ◽  
Sang-Hyuk Kim ◽  
Sang-Hoon Park ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11572
Author(s):  
Wonho Kim ◽  
Kyungsu Jang ◽  
Changwook Ji ◽  
Eunkyung Lee

The A356 alloy has been widely used in automotive components, such as wheels and brake disks, because it is an excellent lightweight material with high corrosion resistance and good mechanical properties. Recently, to reduce the weight of brake disks, the Fe-A356 hybrid brake disk has been suggested. Because brake disk quality is directly related to driving safety, the T4/T6 heat treatment of centrifugally cast A356 alloys were performed to enhance the mechanical properties and reduce micro-segregation. The solid-solution heat treatment followed by annealing caused the formation of Mg-rich intermetallic compounds on the grain boundaries of the Al matrix, decreasing the average hardness of the alloys by 13 HV. In contrast, the solid solution followed by water quenching (T4) reduced the area fractions of the intermetallic compounds and increased the average hardness by 11 HV. The T6 heat-treated A356 alloys, which were influenced by the formation of the Guinier–Preston zone exhibited a relatively higher average hardness, by 18 HV, compared to T4 heat-treated A356 alloys.


2015 ◽  
Vol 1096 ◽  
pp. 319-324
Author(s):  
Xiao Jian Yu ◽  
Ya Lin Lu ◽  
Fu Xian Zhu ◽  
Xing Cheng Li

Automobile wheel of A356 alloy was cast by low pressure casting process. The effect of heat treatment process on microstructures and mechanical properties of A356 alloy cast was discussed. The results indicated that optimal parameters of heat treatment process for A356 alloy included solution temperature of 535°Cand holding time of 4.5hours, aging temperature of 145°Cand holding time of 4hours. Ultimate strength of A356 is 270MPa and elongation rate is 10%. Meanwhile, the microstructure has been apparently improved. The eutectic silicon particle became more spheroidal and distributed uniformly in matrix.


Sign in / Sign up

Export Citation Format

Share Document