A Study on the Proposition of Bending Rigidity of the Longitudinal Stiffener in Steel Girders Stiffened with Single Stiffener

2019 ◽  
Vol 31 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Yong Myung Park ◽  
Byung Jun Kim ◽  
Taek Ryeong Seong ◽  
Chan Hee Park
2001 ◽  
Vol 85 (8) ◽  
pp. 55-59
Author(s):  
Walter Schneider ◽  
John Janowiak ◽  
Harvey Manbeck

2019 ◽  
Vol 116 (10) ◽  
pp. 4012-4017 ◽  
Author(s):  
Yiping Cao ◽  
Sreenath Bolisetty ◽  
Gianna Wolfisberg ◽  
Jozef Adamcik ◽  
Raffaele Mezzenga

Amyloid fibrils have evolved from purely pathological materials implicated in neurodegenerative diseases to efficient templates for last-generation functional materials and nanotechnologies. Due to their high intrinsic stiffness and extreme aspect ratio, amyloid fibril hydrogels can serve as ideal building blocks for material design and synthesis. Yet, in these gels, stiffness is generally not paired by toughness, and their fragile nature hinders significantly their widespread application. Here we introduce an amyloid-assisted biosilicification process, which leads to the formation of silicified nanofibrils (fibril–silica core–shell nanofilaments) with stiffness up to and beyond ∼20 GPa, approaching the Young’s moduli of many metal alloys and inorganic materials. The silica shell endows the silicified fibrils with large bending rigidity, reflected in hydrogels with elasticity three orders of magnitude beyond conventional amyloid fibril hydrogels. A constitutive theoretical model is proposed that, despite its simplicity, quantitatively interprets the nonmonotonic dependence of the gel elasticity upon the filaments bundling promoted by shear stresses. The application of these hybrid silica–amyloid hydrogels is demonstrated on the fabrication of mechanically stable aerogels generated via sequential solvent exchange, supercriticalCO2removal, and calcination of the amyloid core, leading to aerogels of specific surface area as high as 993m2/g, among the highest values ever reported for aerogels. We finally show that the scope of amyloid hydrogels can be expanded considerably by generating double networks of amyloid and hydrophilic polymers, which combine excellent stiffness and toughness beyond those of each of the constitutive individual networks.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2989
Author(s):  
Halina Szafranska ◽  
Ryszard Korycki

In order to ensure a comprehensive evaluation of laminated seams in working clothing, a series of research was carried out to determine the correlation between the parameters of the seam lamination process (i.e., the temperature, the time, the pressure) and the mechanical properties of laminated seams. The mechanical properties were defined by means of the maximum breaking force, the relative elongation at break and the total bending rigidity. The mechanical indexes were accepted as the measure of durability and stability of laminated seams. The correlation between the lamination process parameters and the final properties of the tested seams in working clothing was proposed using a three-factor plan 33. Finally, the single-criteria optimization was introduced and the objective functional is the generalized utility function U. Instead of three independent optimization problems, the single problem was applied, and the global objective function was a weighted average of partial criteria with the assumed weight values. The problem of multicriteria weighted optimization was solved using the determined weights and the ranges of acceptable/unacceptable values.


Author(s):  
Musab Aied Qissab Al-Janabi ◽  
Thamir K. Mahmoud
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document