Push-out Test on Evaluation of Shear Strength Using Angle Shear Connectors

2019 ◽  
Vol 31 (6) ◽  
pp. 413-421 ◽  
Author(s):  
Min-Ki Lee ◽  
Kyung-Jae Shin ◽  
Jun-Seop Lee ◽  
Il-Soo Chae
Author(s):  
Hetao Hou ◽  
Ning Wang ◽  
Zengyun Zang

<p>To accomplish rapid installation and replaceability, a new type of connector for new fully assembled steel-concrete composite beams was studied. The connectors are fixed on the C-shaped channels of the prefabricated floor slab. The load transfer along the interface of the precast floor slab and the steel beam is primarily achieved through the friction between the beam flange and the channels. Push-out tests were conducted to study the mechanical properties of new composite beam. The effects of different C-shaped channel types, repeated loading and number of connectors were investigated. Test results showed that all the connectors exhibited satisfactory performance. When the section height of C-shaped channel is small, the restraining effect on the connector is more remarkable. The shear strength and shear stiffness of the connectors can be improved by reloading. The formulas for calculating the shear strength derived agree well with the experimental results.</p>


2021 ◽  
Vol 15 (57) ◽  
pp. 24-39
Author(s):  
Boursas Farid ◽  
Djamel Boutagouga

A great deal of research has been conducted to improve the understanding of the behavior of new types of shear connectors. This article presents the study of I-shaped connectors behavior under monotonic load welded in four different orientations in order to get the position which gives the high shear strength and the best ductility. For this purpose, eight push-out test specimens with I-shaped shear connectors with different orientations and dimensions were tested in C20/25 and C30/37 concrete classes. The load-slip behavior and failure modes of the tested connectors are presented and discussed. Furthermore, a non-linear 3D finite element modelling of the push-out test is performed in order to further investigate the influencing parameters on the I-shaped connectors behavior. Hence, a parametric study is carried out by using the established 3D finite elements model to study the influence of concrete strength, connector’s steel grade, reinforcements, height and length of the connector. Both experimental and numerical results show that there is a privilege orientation for which the shear strength of an I-shaped shear connector is significantly higher than that of all other tested orientations.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 769-780
Author(s):  
Yong Liu ◽  
Lanhui Guo ◽  
Jun Shi ◽  
Jingfeng Wang

2021 ◽  
Vol 164 ◽  
pp. 107831
Author(s):  
Mahmoud Hosseinpour ◽  
Mehran Zeynalian ◽  
Abdoreza Ataei ◽  
Maryam Daei

2021 ◽  
Vol 11 (9) ◽  
pp. 3877
Author(s):  
Sang-Hyo Kim ◽  
Tuvshintur Batbold ◽  
Syed Haider Ali Shah ◽  
Suro Yoon ◽  
Oneil Han

A design shear resistance formula for Y-type perfobond rib shear connectors is proposed with the various reduction factors, which can be selected depending on the target safety level. The nominal shear resistance formula is improved based on the systematic sensitivity analysis as well as the regression fit test based on 84 push-out test results, including 15 additional push-out tests to extend the application ranges and reduce the estimation errors, compared to the formula proposed in previous studies. Some design variables are additionally included in the proposed design formula: the yield strengths of rebar and rib plate. The basic design variables in the proposed design formula are (1) number of ribs and transverse rebars, (2) concrete compressive strength, (3) rebar diameter and yield strength, and (4) rib thickness, width, height, and yield strength. The application ranges of the basic design variables are recommended for the proposed design formula. The various shear resistance reduction factors are proposed based on the probabilistic ultimate shear resistance model of Y-type perfobond rib shear connectors. The proposed procedure may be recommended to develop the design formula for shear connectors with various shapes.


2008 ◽  
Vol 43 ◽  
pp. 17-22 ◽  
Author(s):  
Matthias Merzkirch ◽  
Kay André Weidenmann ◽  
Eberhard Kerscher ◽  
Detlef Löhe

A possibility to increase both stiffness and strength of aluminium-based structures for the application in lightweight profiles for vehicle space frames is the use of composite extrusions in which high-strength metallic reinforcements are incorporated. Within the scope of the present investigations, composite-extruded profiles with wire-reinforcements made of austenitic spring steel 1.4310 (X10CrNi18-8), in an aluminium matrix AA6060 (AlMgSi0.5), which were exposed to different corrosive media for different times, were characterised in terms of the debonding shear strength using the push-out-technique. The formation of a galvanic couple could be conceived mathematically in regard of terms describing the formation of a shear-impeding layer and the corrosive attack. Thereby the parameters for the different media could be determined.


Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


Sign in / Sign up

Export Citation Format

Share Document