scholarly journals Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes

2015 ◽  
Vol 35 (4) ◽  
pp. 67-75 ◽  
Author(s):  
Woo-Gyun Shin ◽  
Tae-Hee Jung ◽  
Seok-Hwan Go ◽  
Young-Chul Ju ◽  
Hyo-Sik Chang ◽  
...  
2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.


2019 ◽  
Vol 9 (5) ◽  
pp. 4600-4604
Author(s):  
A. R. Jatoi ◽  
S. R. Samo ◽  
A. Q. Jakhrani

The electrical characteristics of photovoltaic (PV) modules are affected by solar radiation and module temperature in outdoor environment. It was found that polycrystalline gained a yearly 0.50°C more average module temperature than monocrystalline. Non-crystalline amorphous modules got a yearly 0.83°C more average temperature than thin film modules. The attainment and release of module temperature was related with material properties of PV module technologies. The amorphous module gave 5.7%, 2.7% and 15.0% more yearly average open-circuit voltage than polycrystalline, monocrystalline and thin film modules. Besides that, the thin film modules gave 6.5% and 1.7%, 9.3% and 4.0%, and 11.3% and 8.8% more yearly average normalized short-circuit current and power output than polycrystalline, monocrystalline and thin film modules respectively. It was shown that the maximum annual average open-circuit voltage was given by amorphous modules and maximum short-circuit current and power output by thin film modules during the study period.


2013 ◽  
Vol 284-287 ◽  
pp. 1163-1167 ◽  
Author(s):  
Huan Liang Tsai ◽  
Chao Jia Yang

This paper presents a novel photovoltaic (PV) model for a commercial PV module, which is augmented with an energy balance equation to simultaneously describe cell temperature and PV electricity output characteristics. Having the thermal and electrical characteristics of commercial PV module available from the manufacturer datasheet, the proposed PV model is implemented on the Simulink environment and verified under the standard test condition (STC) and nominal operating cell temperature (NOCT) condition. The NOCT verification with a commercial PV module datasheet is first addressed. Through experimental measurement of a commercial PV module in real operation from June 1 to August 31, 2011, the proposed model demonstrates the good estimation performance of both cell temperatures and output electricity characteristics. Comparing with ones of the other methods, the predicted output characteristics of the proposed model have a better agreement with the measured ones of an operating PV module.


2019 ◽  
Vol 9 (23) ◽  
pp. 5163 ◽  
Author(s):  
Woo Gyun Shin ◽  
Jong Rok Lim ◽  
Gi Hwan Kang ◽  
Young Chul Ju ◽  
Hye Mi Hwang ◽  
...  

In PV (Photovoltaic) systems, the PV array is a structure in which many PV strings are connected in parallel. The voltage mismatch between PV strings, in which PV modules are connected in a series, occurs due to a voltage decrease in some modules. In this paper, research on the electrical characteristics of PV arrays due to a voltage mismatch was conducted. Considering the voltage mismatch, experiments on partial shading, the non-uniformity of irradiance, and the failure of bypass diodes were conducted on the PV module level. It was confirmed that the open-circuit voltage greatly decreased due to the failure of bypass diodes, which is among the causes of voltage mismatch. From the simulation results at the PV array level, it can be seen that a reverse current flowed into the low-potential string, which includes PV modules, causing the failure of the bypass diodes. Measuring the reverse current at one low-potential string, it was found that, in four parallel circuits, the reverse current was 12 A. For this reason, in large PV plants, an overcurrent can flow into the fuse due to the potential difference between strings, causing an output decrease of PV plants and the burnout of fuses.


2020 ◽  
Vol 31 (1) ◽  
pp. 62-72
Author(s):  
M. Vumbugwa ◽  
J.L. Crozier McCleland ◽  
E.E. Van Dyk ◽  
F.J. Vorster ◽  
T.J. Serameng

Photovoltaic (PV) module operation is critical in PV systems for optimum generation of electrical power. Modules installed in the field suffer uneven soiling caused by bird droppings and dust build-up on their front surface. This study investigated the impact of partial shading caused by non-uniform soiling on the electrical characteristics of multi-crystalline silicon (mc-Si) modules and strings, and compared this with simulated I-V parameters. Light and heavy uneven soiling on mc-Si solar cells resulted in current mismatch which can be simulated. The effects of partial soiling on the I-V characteristics of mc-Si module strings were experimentally measured and agreed with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document