The Efficiency of Payment for Ecosystem Services (PES) in Preservation of Farmland for Mitigation of Flood Damage in the age of Climate Change- Case study of Japan -

2020 ◽  
Vol 26 (1) ◽  
pp. 1-12
Author(s):  
Brian H.S Kim ◽  
Wakamatsu Mika Shin
2018 ◽  
Vol 38 (7) ◽  
Author(s):  
吴娜 WU Na ◽  
宋晓谕 SONG Xiaoyu ◽  
康文慧 KANG Wenhui ◽  
邓晓红 DENG Xiaohong ◽  
胡想全 HU Xiangquan ◽  
...  

2003 ◽  
Vol 30 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Spyros Beltaos ◽  
Sayed Ismail ◽  
Brian C Burrell

Changing climates will likely result in more frequent midwinter ice jams along many Canadian rivers, thereby increasing the likelihood of flood damage and environmental changes. Therefore, the possibility of more frequent ice jams has to be considered during the planning of flood damage reduction measures, the design of waterway structures, and the enactment of measures to protect the environment. As a case study of midwinter jamming, four winter breakup and jamming events that occurred along an upper stretch of the Saint John River during the 1990s are described and the implications of similar midwinter jamming are discussed.Key words: breakup, river ice, climate change, ice jamming, ice thickness, winter, winter thaw.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2015 ◽  
Vol 3 ◽  
pp. 35-42
Author(s):  
Dinesh Chandra Devkota ◽  
Kamal Thapa ◽  
Bhaskar Kharki

Ecosystem services are vital to our well-being as they directly or indirectly support our survival and quality of life. But, the growing impact of climate change diminishes the benefit from ecosystem services. Therefore, identifying possible applicable adaptation options are inevitable to reduce the effect of climate change. The present research is based on a case study of Ksedi River watershed, Ajgada Village in Udaypur district of Nepal. The study demonstrates the comparison between different options to deal with flood and make a sound decision, based on economic rationale for long-term benefits. The present study compares ecosystem based adaptation options with engineering options using cost benefit analysis in order to protect village from flooding. Through stakeholder and expert consultations, ecosystem based adaptation options and economic options that are feasible in the village and catchment to mitigate the floods were listed. Economic analysis of these options and the different combinations were done using cost benefit analysis. Analysis was carried out for each of the different combination of options. Focus on ecosystem based adaptation options provide high benefit to cost return in terms of avoided damages and considering engineering options efficient in flood and erosion control in initial stage in spite of its high cost. The study suggests that reforestation in upland forest areas; plantation along riverbed and management of rangeland should be prioritized. Similarly, preparation of flood model, flood height damage curve and flood vulnerable maps specific to the site will help decision makers to implement site specific adaptation options.


Sign in / Sign up

Export Citation Format

Share Document