A REVIEW ON THE SECOND-GENERATION LIPID CARRIERS: NLC’S

2021 ◽  
Vol 12 (4) ◽  
pp. 176-182
Author(s):  
A N Jyothsna Sree

Over the past few years, nanostructured lipid carriers became an emerging drug delivery system as lipid drug delivery systems are more focused. Within them, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have more advantages over other lipid carriers. This article is a cumulation of structure, types, composition, formulation methodologies, drug release from NLCs, various applications of NLCs. The key aspects for promising drug delivery systems are biocompatibility, drug loading capacity, ease of preparation, non-toxicity, and stability

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 860
Author(s):  
Raneem Jnaidi ◽  
António José Almeida ◽  
Lídia M. Gonçalves

Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.


Author(s):  
Mahsa Mazdaei ◽  
Kofi Asare-Addo

The application of nanotechnology indrug delivery systems (DDS) has been researched widely and seen an advancementover the past three decades. Since the 1970s, nanoparticles were primarilyutilised in vaccine deliveries and cancer chemotherapy. In more recent years,they have been found to hold promises for broader applications such as inproteins and therapeutic gene delivery systems. To date, there have been only ahandful of nanocarrier-loaded drugs commercialised into the pharmaceuticalmarket. More research is thus needed to facilitate a breakthrough of theseproducts into the current market. This mini-review mainly focuses on four typesof commonly utilised organic nanocarriers including micelles, compactpolymerics, solid-lipid nanoparticles and liposomal vesicles and discusses theprogress and some challenges associated with these nanoparticles (NP). 


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 288 ◽  
Author(s):  
Mohamed Haider ◽  
Shifaa M. Abdin ◽  
Leena Kamal ◽  
Gorka Orive

The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.


Sign in / Sign up

Export Citation Format

Share Document